Search results for: Scheduling algorithms.
7 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter
Abstract:
Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a realtime Simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three VelmexXSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed Simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.
Keywords: Haptic feedback, MATLAB, Simulink, Strain Gage, Surgical Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32136 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.
Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5935 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).
Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5644 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8123 The Advancement of Smart Cushion Product and System Design Enhancing Public Health and Well-Being at Workplace
Authors: Dosun Shin, Assegid Kidane, Pavan Turaga
Abstract:
This research project brings together experts in multiple disciplines to bring product design, sensor design, algorithms, and health intervention studies to develop a product and system that helps reduce the amount of time sitting at the workplace. This paper illustrates ongoing improvements to prototypes the research team developed in initial research; including working prototypes with a software application, which were developed and demonstrated for users. Additional modifications were made to improve functionality, aesthetics, and ease of use, which will be discussed in this paper. Extending on the foundations created in the initial phase, our approach sought to further improve the product by conducting additional human factor research, studying deficiencies in competitive products, testing various materials/forms, developing working prototypes, and obtaining feedback from additional potential users. The solution consisted of an aesthetically pleasing seat cover cushion that easily attaches to common office chairs found in most workplaces, ensuring that a wide variety of people can use the product. The product discreetly contains sensors that track when the user sits on their chair, sending information to a phone app that triggers reminders for users to stand up and move around after sitting for a set amount of time. This paper also presents the analyzed typical office aesthetics and selected materials, colors, and forms that complimented the working environment. Comfort and ease of use remained a high priority as the design team sought to provide a product and system that integrated into the workplace. As the research team continues to test, improve, and implement this solution for the sedentary workplace, the team seeks to create a viable product that acts as an impetus for a more active workday and lifestyle, further decreasing the proliferation of chronic disease and health issues for sedentary working people. This paper illustrates in detail the processes of engineering, product design, methodology, and testing results.
Keywords: Anti-sedentary work behavior, new product development, sensor design, health intervention studies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4552 Compliance Modelling and Optimization of Kerf during WEDM of Al7075/SiCP Metal Matrix Composite
Authors: Thella Babu Rao, A. Gopala Krishna
Abstract:
This investigation presents the formulation of kerf (width of slit) and optimal control parameter settings of wire electrochemical discharge machining which results minimum possible kerf while machining Al7075/SiCp MMCs. WEDM is proved its efficiency and effectiveness to cut the hard ceramic reinforced MMCs within the permissible budget. Among the distinct performance measures of WEDM process, kerf is an important performance characteristic which determines the dimensional accuracy of the machined component while producing high precision components. The lack of available of the machinability information such advanced MMCs result the more experimentation in the manufacturing industries. Therefore, extensive experimental investigations are essential to provide the database of effect of various control parameters on the kerf while machining such advanced MMCs in WEDM. Literature reviled the significance some of the electrical parameters which are prominent on kerf for machining distinct conventional materials. However, the significance of reinforced particulate size and volume fraction on kerf is highlighted in this work while machining MMCs along with the machining parameters of pulse-on time, pulse-off time and wire tension. Usually, the dimensional tolerances of machined components are decided at the design stage and a machinist pay attention to produce the required dimensional tolerances by setting appropriate machining control variables. However, it is highly difficult to determine the optimal machining settings for such advanced materials on the shop floor. Therefore, in the view of precision of cut, kerf (cutting width) is considered as the measure of performance for the model. It was found from the literature that, the machining conditions of higher fractions of large size SiCp resulting less kerf where as high values of pulse-on time result in a high kerf. A response surface model is used to predict the relative significance of various control variables on kerf. Consequently, a powerful artificial intelligence called genetic algorithms (GA) is used to determine the best combination of the control variable settings. In the next step the conformation test was conducted for the optimal parameter settings and found good agreement between the GA kerf and measured kerf. Hence, it is clearly reveal that the effectiveness and accuracy of the developed model and program to analyze the kerf and to determine its optimal process parameters. The results obtained in this work states that, the resulted optimized parameters are capable of machining the Al7075/SiCp MMCs more efficiently and with better dimensional accuracy.
Keywords: Al7075SiCP MMC, kerf, WEDM, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20201 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
Authors: Erik Vassøy Olsen, Hirpa G. Lemu
Abstract:
Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6228