Search results for: Artificial intelligence in genomics
21 A Study on the Differential Diagnostic Model for Newborn Hearing Loss Screening
Authors: Chun-Lang Chang
Abstract:
According to the statistics, the prevalence of congenital hearing loss in Taiwan is approximately six thousandths; furthermore, one thousandths of infants have severe hearing impairment. Hearing ability during infancy has significant impact in the development of children-s oral expressions, language maturity, cognitive performance, education ability and social behaviors in the future. Although most children born with hearing impairment have sensorineural hearing loss, almost every child more or less still retains some residual hearing. If provided with a hearing aid or cochlear implant (a bionic ear) timely in addition to hearing speech training, even severely hearing-impaired children can still learn to talk. On the other hand, those who failed to be diagnosed and thus unable to begin hearing and speech rehabilitations on a timely manner might lose an important opportunity to live a complete and healthy life. Eventually, the lack of hearing and speaking ability will affect the development of both mental and physical functions, intelligence, and social adaptability. Not only will this problem result in an irreparable regret to the hearing-impaired child for the life time, but also create a heavy burden for the family and society. Therefore, it is necessary to establish a set of computer-assisted predictive model that can accurately detect and help diagnose newborn hearing loss so that early interventions can be provided timely to eliminate waste of medical resources. This study uses information from the neonatal database of the case hospital as the subjects, adopting two different analysis methods of using support vector machine (SVM) for model predictions and using logistic regression to conduct factor screening prior to model predictions in SVM to examine the results. The results indicate that prediction accuracy is as high as 96.43% when the factors are screened and selected through logistic regression. Hence, the model constructed in this study will have real help in clinical diagnosis for the physicians and actually beneficial to the early interventions of newborn hearing impairment.
Keywords: Data mining, Hearing impairment, Logistic regression analysis, Support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180120 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests
Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani
Abstract:
Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.
Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128219 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.
Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69618 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products
Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil
Abstract:
In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.
Keywords: Hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96017 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373816 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.
Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155415 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53814 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla catla
Authors: Barot Jagruti
Abstract:
The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, color photography, pharmaceuticals and medicine, cosmetic, hair colorings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of C. I. Reactive Red 120 (RR 120) on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg.l-1) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood smears and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.
Keywords: Catla catla, genotoxicity, histopathlogicalchanges, RR 120azo dye.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281513 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites through T6 and T8 Heat Treatments
Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.
Abstract:
In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of benefits such as moderate strength; better deforming characteristics and affordable cost. It is expected that substitution of aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminum alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. In addition to Zn, Mg as major alloying additions, Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties by suitable heat treatment process. Subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments; known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. The hardness value may further improve when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. It is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and up to 5 times increase in wear resistance are also observed in the present study.Keywords: Reinforcement, precipitation, thermomechanical, dislocation, strain hardening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220112 Interactive Garments: Flexible Technologies for Textile Integration
Authors: Anupam Bhatia
Abstract:
Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 327811 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.
Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63310 Cercarial Diversity in Freshwater Snails from Selected Freshwater Bodies and Its Implication for Veterinary and Public Health in Kaduna State, Nigeria
Authors: Fatima Muhammad Abdulkadir, D. B. Maikaje, Y. A. Umar
Abstract:
A study conducted to determine cercariae diversity and prevalence of trematode infection in freshwater snails from six freshwater bodies selected by systematic random sampling in Kaduna State was carried from January 2013 to December 2013. Freshwater snails and cercariae harvested from the study sites were morphologically identified. A total of 23,823 freshwater snails were collected from the six freshwater bodies: Bagoma dam, Gimbawa dam, Kangimi dam, Kubacha dam, Manchok water intake and Saminaka water intake. The observed freshwater snail species were: Melanoides tuberculata, Biomphalaria pfeifferi, Bulinus globosus, Lymnaea natalensis, Physa sp., Cleopatra bulimoides, Bellamya unicolor and Lanistes varicus. The freshwater snails were exposed to artificial bright light from a 100 Watt electric bulb in the laboratory to induce cercarial shedding. Of the total freshwater snails collected, 10.55% released one or more types of cercariae. Seven morphological types of cercariae were shed by six freshwater snail species namely: Brevifurcate-apharyngeate distome, Amphistome, Gymnocephalus, Longifurcate-pharyngeate monostome, Longifurcate-pharyngeate distome, Echinostome and Xiphidio cercariae. Infection was monotype in most of the freshwater snails collected; however, Physa species presented a mixed infection with Gymnocephalus and Longifurcate-pharyngeate distome cercariae. B. globosus and B. pfeifferi were the most preferred intermediate hosts with the prevalence of 13.48% and 13.46%, respectively. The diversity and prevalence of cercariae varied among the six freshwater bodies with Manchok water intake having the highest infestation (14.3%) and the least recorded in Kangimi dam (3.9%). There was a correlation trend between the number of freshwater snails and trematode infection with Manchok exhibiting the highest and Bagoma none. The highest cercarial diversity was observed in B. pfeifferi and B. globosus with four morphotypes each, and the lowest was in M. tuberculata with one morphotype. The general distribution of freshwater snails and the trematode cercariae they shed suggests the risk of human and animals to trematodiasis in Manchok community. Public health education to raise awareness on individual and communal action that may control snail breeding sites, prevent transmission and provide access to treatment should be intensified.
Keywords: Cercariae, diversity, freshwater snails, prevalence, trematodiasis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15489 Biospeckle Supported Fruit Bruise Detection
Authors: Adilson M. Enes, Juliana A. Fracarolli, Inácio M. Dal Fabbro, Silvestre Rodrigues
Abstract:
This research work proposed a study of fruit bruise detection by means of a biospeckle method, selecting the papaya fruit (Carica papaya) as testing body. Papaya is recognized as a fruit of outstanding nutritional qualities, showing high vitamin A content, calcium, carbohydrates, exhibiting high popularity all over the world, considering consumption and acceptability. The commercialization of papaya faces special problems which are associated to bruise generation during harvesting, packing and transportation. Papaya is classified as climacteric fruit, permitting to be harvested before the maturation is completed. However, by one side bruise generation is partially controlled once the fruit flesh exhibits high mechanical firmness. By the other side, mechanical loads can set a future bruise at that maturation stage, when it can not be detected yet by conventional methods. Mechanical damages of fruit skin leave an entrance door to microorganisms and pathogens, which will cause severe losses of quality attributes. Traditional techniques of fruit quality inspection include total soluble solids determination, mechanical firmness tests, visual inspections, which would hardly meet required conditions for a fully automated process. However, the pertinent literature reveals a new method named biospeckle which is based on the laser reflectance and interference phenomenon. The laser biospeckle or dynamic speckle is quantified by means of the Moment of Inertia, named after its mechanical counterpart due to similarity between the defining formulae. Biospeckle techniques are able to quantify biological activities of living tissues, which has been applied to seed viability analysis, vegetable senescence and similar topics. Since the biospeckle techniques can monitor tissue physiology, it could also detect changes in the fruit caused by mechanical damages. The proposed technique holds non invasive character, being able to generate numerical results consistent with an adequate automation. The experimental tests associated to this research work included the selection of papaya fruit at different maturation stages which were submitted to artificial mechanical bruising tests. Damages were visually compared with the frequency maps yielded by the biospeckle technique. Results were considered in close agreement.
Keywords: Biospeckle, papaya, mechanical damages, vegetable bruising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25748 Corrosion Study of Magnetically Driven Components in Spinal Implants by Immersion Testing in Simulated Body Fluids
Authors: Benjawan Saengwichian, Alasdair E. Charles, Philip J. Hyde
Abstract:
Magnetically controlled growing rods (MCGRs) have been used to stabilise and correct spinal curvature in children to support non-invasive scoliosis adjustment. Although the encapsulated driving components are intended to be isolated from body fluid contact, in vivo corrosion was observed on these components due to sealing mechanism damage. Consequently, a corrosion circuit is created with the body fluids, resulting in malfunction of the lengthening mechanism. Particularly, the chloride ions in blood plasma or cerebrospinal fluid (CSF) may corrode the MCGR alloys, possibly resulting in metal ion release in long-term use. However, there is no data available on the corrosion resistance of spinal implant alloys in CSF. In this study, an in vitro immersion configuration was designed to simulate in vivo corrosion of 440C SS-Ti6Al4V couples. The 440C stainless steel (SS) was heat-treated to investigate the effect of tempering temperature on intergranular corrosion (IGC), while crevice and galvanic corrosion were studied by limiting the clearance of dissimilar couples. Tests were carried out in a neutral artificial cerebrospinal fluid (ACSF) and phosphate-buffered saline (PBS) under aeration and deaeration for 2 months. The composition of the passive films and metal ion release were analysed. The effect of galvanic coupling, pH, dissolved oxygen and anion species on corrosion rates and corrosion mechanisms are discussed based on quantitative and qualitative measurements. The results suggest that ACSF is more aggressive than PBS due to the combination of aggressive chlorides and sulphate anions, while phosphate in PBS acts as an inhibitor to delay corrosion. The presence of Vivianite on the SS surface in PBS lowered the corrosion rate (CR) more than 5 times for aeration and nearly 2 times for deaeration, compared with ACSF. The CR of 440C is dependent on passive film properties varied by tempering temperature and anion species. Although the CR of Ti6Al4V is insignificant, it tends to release more Ti ions in deaerated ACSF than under aeration, about 6 µg/L. It seems the crevice-like design has more effect on macroscopic corrosion than combining the dissimilar couple, whereas IGC is dominantly observed on sensitized microstructure.
Keywords: Cerebrospinal fluid, crevice corrosion, intergranular corrosion, magnetically controlled growing rods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7017 Italians- Social and Emotional Loneliness: The Results of Five Studies
Authors: Vanda Lucia Zammuner
Abstract:
Subjective loneliness describes people who feel a disagreeable or unacceptable lack of meaningful social relationships, both at the quantitative and qualitative level. The studies to be presented tested an Italian 18-items self-report loneliness measure, that included items adapted from scales previously developed, namely a short version of the UCLA (Russell, Peplau and Cutrona, 1980), and the 11-items Loneliness scale by De Jong-Gierveld & Kamphuis (JGLS; 1985). The studies aimed at testing the developed scale and at verifying whether loneliness is better conceptualized as a unidimensional (so-called 'general loneliness') or a bidimensional construct, namely comprising the distinct facets of social and emotional loneliness. The loneliness questionnaire included 2 singleitem criterion measures of sad mood, and social contact, and asked participants to supply information on a number of socio-demographic variables. Factorial analyses of responses obtained in two preliminary studies, with 59 and 143 Italian participants respectively, showed good factor loadings and subscale reliability and confirmed that perceived loneliness has clearly two components, a social and an emotional one, the latter measured by two subscales, a 7-item 'general' loneliness subscale derived from UCLA, and a 6–item 'emotional' scale included in the JGLS. Results further showed that type and amount of loneliness are related, negatively, to frequency of social contacts, and, positively, to sad mood. In a third study data were obtained from a nation-wide sample of 9.097 Italian subjects, 12 to about 70 year-olds, who filled the test on-line, on the Italian web site of a large-audience magazine, Focus. The results again confirmed the reliability of the component subscales, namely social, emotional, and 'general' loneliness, and showed that they were highly correlated with each other, especially the latter two. Loneliness scores were significantly predicted by sex, age, education level, sad mood and social contact, and, less so, by other variables – e.g., geographical area and profession. The scale validity was confirmed by the results of a fourth study, with elderly men and women (N 105) living at home or in residential care units. The three subscales were significantly related, among others, to depression, and to various measures of the extension of, and satisfaction with, social contacts with relatives and friends. Finally, a fifth study with 315 career-starters showed that social and emotional loneliness correlate with life satisfaction, and with measures of emotional intelligence. Altogether the results showed a good validity and reliability in the tested samples of the entire scale, and of its components.Keywords: Emotional loneliness, social loneliness, scale development and testing, life span and cultural differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30176 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances
Authors: P. Mounnarath, U. Schmitz, Ch. Zhang
Abstract:
Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.Keywords: Expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17165 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems
Authors: Marine Shavlakadze
Abstract:
Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.
Keywords: Hydroponics, micro-fertilizers, manganese ore, chemical amelioration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7074 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11763 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11782 Hybrid Living: Emerging Out of the Crises and Divisions
Authors: Yiorgos Hadjichristou
Abstract:
The paper will focus on the hybrid living typologies which are brought about due to the Global Crisis. Mixing of the generations and the groups of people, mingling the functions of living with working and socializing, merging the act of living in synergy with the urban realm and its constituent elements will be the springboard of proposing an essential sustainable housing approach and the respective urban development. The thematic will be based on methodologies developed both on the academic, educational environment including participation of students’ research and on the practical aspect of architecture including case studies executed by the author in the island of Cyprus. Both paths of the research will deal with the explorative understanding of the hybrid ways of living, testing the limits of its autonomy. The evolution of the living typologies into substantial hybrid entities, will deal with the understanding of new ways of living which include among others: re-introduction of natural phenomena, accommodation of the activity of work and services in the living realm, interchange of public and private, injections of communal events into the individual living territories. The issues and the binary questions raised by what is natural and artificial, what is private and what public, what is ephemeral and what permanent and all the in-between conditions are eloquently traced in the everyday life in the island. Additionally, given the situation of Cyprus with the eminent scar of the dividing ‘Green line’ and the waiting of the ‘ghost city’ of Famagusta to be resurrected, the conventional way of understanding the limits and the definitions of the properties is irreversibly shaken. The situation is further aggravated by the unprecedented phenomenon of the crisis on the island. All these observations set the premises of reexamining the urban development and the respective sustainable housing in a synergy where their characteristics start exchanging positions, merge into each other, contemporarily emerge and vanish, changing from permanent to ephemeral. This fluidity of conditions will attempt to render a future of the built- and unbuilt realm where the main focusing point will be redirected to the human and the social. Weather and social ritual scenographies together with ‘spontaneous urban landscapes’ of ‘momentary relationships’ will suggest a recipe for emerging urban environments and sustainable living. Thus, the paper will aim at opening a discourse on the future of the sustainable living merged in a sustainable urban development in relation to the imminent solution of the division of island, where the issue of property became the main obstacle to be overcome. At the same time, it will attempt to link this approach to the global need for a sustainable evolution of the urban and living realms.
Keywords: Social ritual scenographies, spontaneous urban landscapes, substantial hybrid entities, re-introduction of natural phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10781 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.
Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287