Search results for: Knowledge mining
1465 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction
Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli
Abstract:
In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.
Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481464 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology
Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian
Abstract:
Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.
Keywords: Energy in Buildings, Hardware in Loop, Modelica (Dymola), Monte Carlo Simulation, Uncertainty Propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5761463 Methodology of Restoration Research in Czech Republic
Authors: M. Rehor, V. Ondracek
Abstract:
Restoration research has become important on principle recently in Czech Republic. The reason is simple. More than 70 % of mined brown coal comes from the North Bohemian Basin these days. Open cast brown coal mining has lead to large damage on the landscape. Reclamation of phytotoxic areas is one of the serious problems in the North Bohemian Basin. It mainly concerns the areas with the occurrence of overburden rocks from the coal bed enriched with coal. The presented paper includes the characteristics of the important phytotoxic areas and the methodology of their reclamation. The results are documented with the long term monitoring of physical, mineralogical, chemical and pedological parameters of rocks in the testing areas.
Keywords: Brown coal, dump, methodology, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441462 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets
Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi
Abstract:
In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.
Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011461 A Real Time Expert System for Decision Support in Nuclear Power Plants
Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru
Abstract:
In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.
Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371460 Adaptive E-Learning System Using Fuzzy Logic and Concept Map
Authors: Mesfer Al Duhayyim, Paul Newbury
Abstract:
This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.
Keywords: Adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11031459 Design of Cooperative Processes of Innovation
Authors: Suzanne Yaganeh, Janni Nielsen, Leif Bloch Rasmussen
Abstract:
This paper invites to dialogue and reflections on innovation and entrepreneurship by presenting concepts of innovation leading to the introduction of a complex theoretical framework; Cooperative Innovation (CO-IN). CO-IN is a didactic model enhancing and scaffolding processes of cooperation creating innovation drawing on a Scandinavian tradition. CO-IN is based on a cross-sectorial and multidisciplinary approach. We introduce the concept of complementarity to help capture the validity of diversity and we suggest the concept of “the space in between" to understand the creation of identity as a collective mind. We see dialogue and the use of multi modal techniques as essential tools for conceptualizations giving possibility for clarification of the complexity and diversity leading to decision making based on knowledge as commons. We introduce the didactic design and present our empirical findings from an innovation workshop in Argentina. In a final paragraph we reflect on the design as a support of the development of common ground, collective mind and collective action and the creation of knowledge as commons to facilitate innovation and entrepreneurship.Keywords: CO-operative Innovation, didactic design, dialogue and ICT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17181458 On Supporting a Meta-design Approach in Socio-Technical Ontology Engineering
Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi
Abstract:
Many studies have revealed the fact of the complexity of ontology building process. Therefore there is a need for a new approach which one of that addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model of socio-technical ontology engineering. Principles in the meta-design framework are applied in the construction phases of the ontology. A web portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a semantic web application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.
Keywords: Socio-technical, meta-design, ontology engineering methodology, semantic web application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25211457 A Fast Block-based Evolutional Algorithm for Combinatorial Problems
Authors: Huang, Wei-Hsiu Chang, Pei-Chann, Wang, Lien-Chun
Abstract:
The problems with high complexity had been the challenge in combinatorial problems. Due to the none-determined and polynomial characteristics, these problems usually face to unreasonable searching budget. Hence combinatorial optimizations attracted numerous researchers to develop better algorithms. In recent academic researches, most focus on developing to enhance the conventional evolutional algorithms and facilitate the local heuristics, such as VNS, 2-opt and 3-opt. Despite the performances of the introduction of the local strategies are significant, however, these improvement cannot improve the performance for solving the different problems. Therefore, this research proposes a meta-heuristic evolutional algorithm which can be applied to solve several types of problems. The performance validates BBEA has the ability to solve the problems even without the design of local strategies.
Keywords: Combinatorial problems, Artificial Chromosomes, Blocks Mining, Block Recombination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181456 Rhetorical Communication in the CogSci Discourse Community: The Cognitive Neurosciences (2004) in the Context of Scientific Dissemination
Authors: Lucia Abbamonte, Olimpia Matarazzo
Abstract:
In recent years linguistic research has turned increasing attention to covert/overt strategies to modulate authorial stance and positioning in scientific texts, and to the recipients' response. This study discussed some theoretical implications of the use of rhetoric in scientific communication and analysed qualitative data from the authoritative The Cognitive Neurosciences III (2004) volume. Its genre-identity, status and readability were considered, in the social interactive context of contemporary disciplinary discourses – in their polyphony of traditional and new, emerging genres. Evidence was given of the ways its famous authors negotiate and shape knowledge and research results – explicitly appraising team work and promoting faith in the fast-paced progress of Cognitive Neuroscience, also through experiential metaphors – by presenting a set of examples, ordered according to their dominant rhetorical quality.Keywords: Appraisal, disciplinary discourses, experientialmetaphors, genre, identity, knowledge, readability, rhetoric, strategies, theoretical implications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13901455 An Engineering Approach to Forecast Volatility of Financial Indices
Authors: Irwin Ma, Tony Wong, Thiagas Sankar
Abstract:
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311454 Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture
Authors: Karolina Porada
Abstract:
Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g. air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling. For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.
Keywords: Brownfields, landscape architecture, contemporary parks, remediation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9871453 Research Topic Map Construction
Authors: Hei-Chia Wang, Che-Tsung Yang
Abstract:
While the explosive increase in information published on the Web, researchers have to filter information when searching for conference related information. To make it easier for users to search related information, this paper uses Topic Maps and social information to implement ontology since ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. Besides enhancing information in Topic Maps, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. This paper uses ontology, containing abundant of knowledge hierarchy structure, to facilitate researchers getting useful search results. However, most previous ontology construction methods didn-t take “people" into account. So this paper also analyzes the social information which helps researchers find the possibilities of cooperation/combination as well as associations between research topics, and tries to offer better results.Keywords: Ontology, topic maps, social information, co-authorship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041452 Sequential Partitioning Brainbow Image Segmentation Using Bayesian
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.
Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22611451 Density Clustering Based On Radius of Data (DCBRD)
Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.
Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18771450 Training Undergraduate Engineering Students in Robotics and Automation through Model-Based Design Training: A Case Study at Assumption University of Thailand
Authors: Sajed A. Habib
Abstract:
Problem-based learning (PBL) is a student-centered pedagogy that originated in the medical field and has also been used extensively in other knowledge disciplines with recognized advantages and limitations. PBL has been used in various undergraduate engineering programs with mixed outcomes. The current fourth industrial revolution (digital era or Industry 4.0) has made it essential for many science and engineering students to receive effective training in advanced courses such as industrial automation and robotics. This paper presents a case study at Assumption University of Thailand, where a PBL-like approach was used to teach some aspects of automation and robotics to selected groups of undergraduate engineering students. These students were given some basic level training in automation prior to participating in a subsequent training session in order to solve technical problems with increased complexity. The participating students’ evaluation of the training sessions in terms of learning effectiveness, skills enhancement, and incremental knowledge following the problem-solving session was captured through a follow-up survey consisting of 14 questions and a 5-point scoring system. From the most recent training event, an overall 70% of the respondents indicated that their skill levels were enhanced to a much greater level than they had had before the training, whereas 60.4% of the respondents from the same event indicated that their incremental knowledge following the session was much greater than what they had prior to the training. The instructor-facilitator involved in the training events suggested that this method of learning was more suitable for senior/advanced level students than those at the freshmen level as certain skills to effectively participate in such problem-solving sessions are acquired over a period of time, and not instantly.
Keywords: Automation, industry 4.0, model-based design training, problem-based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11031449 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance
Authors: Javier Parra-Domínguez, Juan Manuel Corchado
Abstract:
At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.Keywords: Case-based reasoning, knowledge, police, public efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6041448 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University
Authors: Siriporn Poolsuwan, Kanyarat Bussaban
Abstract:
This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization
Keywords: Online Database, User Behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241447 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration
Authors: Binu Thomas, Raju G., Sonam Wangmo
Abstract:
In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19921446 Improved C-Fuzzy Decision Tree for Intrusion Detection
Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771445 Towards a New Era of Sustainability in the Automotive Industry: Strategic Human Resource Management and Green Technology Innovation
Authors: Reihaneh Montazeri Shatouri, Rosmini Omar, Kunio Igusa
Abstract:
Although automotive industry has brought different beneficiaries to human life, it is being pointed out as one of the major cause of global air pollution which resulted in climate change, smog, green house gases (GHGs), and human diseases by many reasons. Since auto industry is one of the largest consumers of fossil fuels, the realization of green innovations is becoming a crucial choice to meet the challenges towards sustainable development. Recently, many auto manufacturers have embarked on green technology initiatives to gain a competitive advantage in the global market; however, innovative manufacturing systems and technologies can enhance operational performance only if the human resource management is in place to elicit the motivation of the employees and develop their organizational expertise. No organization can perform at peak levels unless each employee is committed to the company goals and works as an effective team member. Strategic human resource practices are the primary means by which firms can shape the skills, attitudes, and behavior of individuals to align with the business strategic objectives. This study investigates on the comprehensive approach of multiple advanced technology innovations and human resource management at Toyota Motor Corporation as the market leader of full hybrid technology in the automotive industry. Then, HRM framework of the company is described and three sets of human resource practices that support the innovation-oriented HR system, presented. Finally, a conceptual framework for innovativeness in green technology in automotive industry by applying a deliberate strategic HR management system and knowledge management with the intervening factors of organizational culture, knowledge application and knowledge sharing is proposed.
Keywords: Automotive Industry, Green Technology, Innovation, Strategic Human Resource Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52621444 A Systematic Map of the Research Trends in Wildfire Management in Mediterranean-Climate Regions
Authors: Renata Martins Pacheco, João Claro
Abstract:
Wildfires are becoming an increasing concern worldwide, causing substantial social, economic, and environmental disruptions. This situation is especially relevant in Mediterranean-climate regions, present in all the five continents of the world, in which fire is not only a natural component of the environment but also perhaps one of the most important evolutionary forces. The rise in wildfire occurrences and their associated impacts suggests the need for identifying knowledge gaps and enhancing the basis of scientific evidence on how managers and policymakers may act effectively to address them. Considering that the main goal of a systematic map is to collate and catalog a body of evidence to describe the state of knowledge for a specific topic, it is a suitable approach to be used for this purpose. In this context, the aim of this study is to systematically map the research trends in wildfire management practices in Mediterranean-climate regions. A total of 201 wildfire management studies were analyzed and systematically mapped in terms of their: Year of publication; Place of study; Scientific outlet; Research area (Web of Science) or Research field (Scopus); Wildfire phase; Central research topic; Main objective of the study; Research methods; and Main conclusions or contributions. The results indicate that there is an increasing number of studies being developed on the topic (most from the last 10 years), but more than half of them are conducted in few Mediterranean countries (60% of the analyzed studies were conducted in Spain, Portugal, Greece, Italy or France), and more than 50% are focused on pre-fire issues, such as prevention and fuel management. In contrast, only 12% of the studies focused on “Economic modeling” or “Human factors and issues,” which suggests that the triple bottom line of the sustainability argument (social, environmental, and economic) is not being fully addressed by fire management research. More than one-fourth of the studies had their objective related to testing new approaches in fire or forest management, suggesting that new knowledge is being produced on the field. Nevertheless, the results indicate that most studies (about 84%) employed quantitative research methods, and only 3% of the studies used research methods that tackled social issues or addressed expert and practitioner’s knowledge. Perhaps this lack of multidisciplinary studies is one of the factors hindering more progress from being made in terms of reducing wildfire occurrences and their impacts.
Keywords: Management Mediterranean-climate regions, policy, wildfire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6751443 Ontology Population via NLP Techniques in Risk Management
Authors: Jawad Makki, Anne-Marie Alquier, Violaine Prince
Abstract:
In this paper we propose an NLP-based method for Ontology Population from texts and apply it to semi automatic instantiate a Generic Knowledge Base (Generic Domain Ontology) in the risk management domain. The approach is semi-automatic and uses a domain expert intervention for validation. The proposed approach relies on a set of Instances Recognition Rules based on syntactic structures, and on the predicative power of verbs in the instantiation process. It is not domain dependent since it heavily relies on linguistic knowledge. A description of an experiment performed on a part of the ontology of the PRIMA1 project (supported by the European community) is given. A first validation of the method is done by populating this ontology with Chemical Fact Sheets from Environmental Protection Agency2. The results of this experiment complete the paper and support the hypothesis that relying on the predicative power of verbs in the instantiation process improves the performance.Keywords: Information Extraction, Instance Recognition Rules, Ontology Population, Risk Management, Semantic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361442 Finding an Optimized Discriminate Function for Internet Application Recognition
Authors: E. Khorram, S.M. Mirzababaei
Abstract:
Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.
Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101441 SySRA: A System of a Continuous Speech Recognition in Arab Language
Authors: Samir Abdelhamid, Noureddine Bouguechal
Abstract:
We report in this paper the model adopted by our system of continuous speech recognition in Arab language SySRA and the results obtained until now. This system uses the database Arabdic-10 which is a corpus of word for the Arab language and which was manually segmented. Phonetic decoding is represented by an expert system where the knowledge base is translated in the form of production rules. This expert system transforms a vocal signal into a phonetic lattice. The higher level of the system takes care of the recognition of the lattice thus obtained by deferring it in the form of written sentences (orthographical Form). This level contains initially the lexical analyzer which is not other than the module of recognition. We subjected this analyzer to a set of spectrograms obtained by dictating a score of sentences in Arab language. The rate of recognition of these sentences is about 70% which is, to our knowledge, the best result for the recognition of the Arab language. The test set consists of twenty sentences from four speakers not having taken part in the training.Keywords: Continuous speech recognition, lexical analyzer, phonetic decoding, phonetic lattice, vocal signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13901440 K-Means for Spherical Clusters with Large Variance in Sizes
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.Keywords: K-Means, Data Clustering, Cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32831439 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay
Authors: E. S. Gower, M. O. J. Hawksford
Abstract:
An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.Keywords: expectation-maximization, Pitman estimator, sparsedecomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501438 Students’ Perceptions of Communication Design in Media: Case Study of Portuguese and Spanish Communication Students
Authors: Fátima Gonçalves, Joaquim Brigas, Jorge Gonçalves
Abstract:
The proliferation of mobile devices in society enables the media to disseminate information and knowledge more rapidly. Higher education students access these contents and share them with each other, in the most diverse platforms, allowing the ubiquity in access to information. This article presents the results and respective quantitative analysis of a survey applied to communication students of two higher education institutions: one in Portugal and another in Spain. The results show that, in this sample, higher education students regularly access news content believing traditional news sources to be more credible. Regarding online sources, it was verified that the access was mostly to free news contents. This study intends to promote the knowledge about the changes that occur in the relationship of higher education students with the media, characterizing how news consumption is processed by these students, considering the resulting effects of the digital media evolution. It is intended to present not only the news sources they use, but also to know some of their habits and relationship with the news media.
Keywords: Students’ perceptions, communication design, mass media, higher education, digital media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9391437 Literature-Based Discoveries in Lupus Treatment
Authors: Oluwaseyi Jaiyeoba, Vetria Byrd
Abstract:
Systemic lupus erythematosus (aka lupus) is a chronic disease known for its chameleon-like ability to mimic symptoms of other diseases rendering it hard to detect, diagnose and treat. The heterogeneous nature of the disease generates disparate data that are often multifaceted and multi-dimensional. Musculoskeletal manifestation of lupus is one of the most common clinical manifestations of lupus. This research links disparate literature on the treatment of lupus as it affects the musculoskeletal system using the discoveries from literature-based research articles available on the PubMed database. Several Natural Language Processing (NPL) tools exist to connect disjointed but related literature, such as Connected Papers, Bitola, and Gopalakrishnan. Literature-based discovery (LBD) has been used to bridge unconnected disciplines based on text mining procedures. The technical/medical literature consists of many technical/medical concepts, each having its sub-literature. This approach has been used to link Parkinson’s, Raynaud, and Multiple Sclerosis treatment within works of literature. Literature-based discovery methods can connect two or more related but disjointed literature concepts to produce a novel and plausible approach to solving a research problem. Data visualization techniques with the help of natural language processing tools are used to visually represent the result of literature-based discoveries. Literature search results can be voluminous, but Data visualization processes can provide insight and detect subtle patterns in large data. These insights and patterns can lead to discoveries that would have otherwise been hidden from disjointed literature. In this research, literature data are mined and combined with visualization techniques for heterogeneous data to discover viable treatments reported in the literature for lupus expression in the musculoskeletal system. This research answers the question of using literature-based discovery to identify potential treatments for a multifaceted disease like lupus. A three-pronged methodology is used in this research: text mining, natural language processing, and data visualization. These three research-related fields are employed to identify patterns in lupus-related data that, when visually represented, could aid research in the treatment of lupus. This work introduces a method for visually representing interconnections of various lupus-related literature. The methodology outlined in this work is the first step toward literature-based research and treatment planning for the musculoskeletal manifestation of lupus. The results also outline the interconnection of complex, disparate data associated with the manifestation of lupus in the musculoskeletal system. The societal impact of this work is broad. Advances in this work will improve the quality of life for millions of persons in the workforce currently diagnosed and silently living with a musculoskeletal disease associated with lupus.
Keywords: Systemic lupus erythematosus, LBD, Data Visualization, musculoskeletal system, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5101436 Antecedents of Word-of-Mouth for Meat with Traceability: Evidence from Thai Consumers
Authors: Kawpong Polyorat, Nathamon Buaprommee
Abstract:
Because of the outbreak of mad cow disease and bird flu, consumers have become more concerned with quality and safety of meat and poultry. As a consequence, meat traceability has been implemented as a tool to raise the standard in the meat production industry. In Thailand, while traceability is relatively common among the manufacturer-wholesaler-retailers cycle, it is rarely used as a marketing tool specifically designed to persuade consumers who are the actual meat endusers. Therefore, the present study attempts to understand what influences consumers to spread their words-of-mouth (WOM) regarding meat with traceability by conducting a study in Thailand where research in this area is rather scant. Data were collected from one hundred and sixty-seven consumers in the northeastern region and analyzed with SEM. The study results reveal that perceived usefulness of traceability system, social norms, and product class knowledge are significant antecedents where consumers spread positive words regarding meat with traceability system. A number of theoretical and managerial implications as well as future study directions are offered at the end of this study report.
Keywords: Perceived usefulness, product knowledge, social norms, traceability, word-of-mouth,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646