Search results for: liquefaction
8 Influence of p-y curves on Buckling Capacity of Pile Foundation
Authors: Praveen Huded M., Suresh R. Dash
Abstract:
Pile foundations are one of the most preferred deep foundation systems for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Failure of pile foundation have occurred because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However, the buckling capacity depends on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient methods to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, there are different p-y curves available for modeling liquefiable soil. In the present work, the influence of two such p-y curves on the buckling capacity of pile foundation is studied considering the initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. A significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on the buckling capacity of pile foundation.
Keywords: pile foundation, liquefaction, buckling load, non-linear p-y curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6787 Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting
Authors: Waleed S. Alwaneen
Abstract:
In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as Campylobacter, Salmonella sp. and Escherichia coli cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces.Keywords: Fruit beetle, waxworms, tiger worms, waste conditioning, composting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9206 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.
Keywords: Improvement, shear strength, internal friction angle, sandy soil, rubber chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6705 CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns
Authors: Shyam Kumar, Nannuri Srinivasulu, Ashok Khanna
Abstract:
Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.Keywords: Bubble column, Computational fluid dynamics, Gas holdup profile, k-ε model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27194 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.Keywords: Earthquake disaster, spatial statistical analysis, principle components analysis, clustered patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13853 The Effect of Stone Column (Nailing and Geogrid) on Stability of Expansive Clay
Authors: Komeil Valipourian, Mohsen Ramezan Shirazi, Orod Zarrin Kafsh
Abstract:
By enhancing the applicatıon of grounds for establishment and due to the lack of appropriate sites, engineers attempt to seek out a new method to reduce the weakness of soils. İn aspect of economic situation, various ways have been used to decrease the weak grounds. Because of the rapid development of infrastructural facilities, spreading the construction operation is an obligation. Furthermore, in various sites with the really bad soil situation, engineers have considered obvious problems. One of the most essential ways for developing the weak soils is stone column. Obviously, the method was introduced in France in 1830 to improve a native soil initially. Stone columns have an expanding range of usage in different rough foundation sites all over the world to increase the bearing capacity, to reduce the whole and differential settlements, to enhance the rate of consolidation, to stabilize slopes stability of embankments and to increase the liquefaction resistance as well. A recent procedure called installing vertical nails along the round stone columns in order to make better the performance of considered columns is offered. Moreover, thanks to the enhancing the nail diameter, number and embedment nail depth, the positive points of vertical circumferential nails increases. Based on the result of this study, load caring capacity will be develop with enhancing the length and the power of reinforcements in vertical encasement stone column (CESC). In this study, the main purpose is comparing two methods of stone columns (installed a nail surrounding the stone columns and using geogrid on clay) for enhancing the bearing capacity, decreasing the whole and various settlements.Keywords: Bearing Capacity, Clay, Geogrid, Nailing, Settlements, Stone Column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28662 Formulation Development and Moiturising Effects of a Topical Cream of Aloe vera Extract
Authors: Akhtar N, Khan BA, Khan MS, Mahmood T, Khan HMS, Iqbal M, Bashir S
Abstract:
This study was designed to formulate, pharmaceutically evaluate a topical skin-care cream (w/o emulsion) of Aloe Vera versus its vehicle (Base) as control and determine their effects on Stratum Corneum (SC) water content and Transepidermal water loss (TEWL). Base containing no extract and a Formulation containing 3% concentrated extract of Aloe Vera was developed by entrapping in the inner aqueous phase of w/o emulsion (cream). Lemon oil was incorporated to improve the odor. Both the Base and Formulation were stored at 8°C ±0.1°C (in refrigerator), 25°C±0.1°C, 40°C±0.1°C and 40°C± 0.1°C with 75% RH (in incubator) for a period of 4 weeks to predict their stability. The evaluation parameters consisted of color, smell, type of emulsion, phase separation, electrical conductivity, centrifugation, liquefaction and pH. Both the Base and Formulation were applied to the cheeks of 21 healthy human volunteers for a period of 8 weeks Stratum corneum (SC) water content and Transepidermal water loss (TEWL) were monitored every week to measure any effect produced by these topical creams. The expected organoleptic stability of creams was achieved from 4 weeks in-vitro study period. Odor was disappeared with the passage of time due to volatilization of lemon oil. Both the Base and Formulation produced significant (p≤0.05) changes in TEWL with respect to time. SC water content was significantly (p≤0.05) increased by the Formulation while the Base has insignificant (p 0.05) effects on SC water content. The newly formulated cream of Aloe Vera, applied is suitable for improvement and quantitative monitoring of skin hydration level (SC water content/ moisturizing effects) and reducing TEWL in people with dry skin.Keywords: Aloe Vera; Skin; Stratum corneum (SC) water content and Transepidermal water loss (TEWL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79141 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils
Keywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168