Search results for: Anti-Western Sentiment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 60

Search results for: Anti-Western Sentiment

30 Survey on Arabic Sentiment Analysis in Twitter

Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb

Abstract:

Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.

Keywords: Big Data, Social Networks, Sentiment Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4348
29 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.

Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
28 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery

Authors: Colette Malyack, Pius Egbelu

Abstract:

Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.

Keywords: Network planning, Last Mile Delivery, LMD, omnichannel delivery network, omnichannel logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
27 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
26 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
25 The Association between Affective States and Sexual/Health-Related Status among Men Who Have Sex with Men in China: An Exploration Study Using Social Media Data

Authors: Zhi-Wei Zheng, Zhong-Qi Liu, Jia-Ling Qiu, Shan-Qing Guo, Zhong-Wei Jia, Chun Hao

Abstract:

Objectives: The purpose of this study was to understand and examine the association between diurnal mood variation and sexual/health-related status among men who have sex with men (MSM) using data from MSM Chinese Twitter messages. The study consists of 843,745 postings of 377,610 MSM users located in Guangdong that were culled from the MSM Chinese Twitter App. Positive affect, negative affect, sexual related behaviors, and health-related status were measured using the Simplified Chinese Linguistic Inquiry and Word Count. Emotions, including joy, sadness, anger, fear, and disgust were measured using the Weibo Basic Mood Lexicon. A positive sentiment score and a positive emotions score were also calculated. Linear regression models based on a permutation test were used to assess associations between affective states and sexual/health-related status. In the results, 5,871 active MSM users and their 477,374 postings were finally selected. MSM expressed positive affect and joy at 8 a.m. and expressed negative affect and negative emotions between 2 a.m. and 4 a.m. In addition, 25.1% of negative postings were directly related to health and 13.4% reported seeking social support during that sensitive period. MSM who were senior, educated, overweight or obese, self-identified as performing a versatile sex role, and with less followers, more followers, and less chat groups mainly expressed more negative affect and negative emotions. MSM who talked more about sexual-related behaviors had a higher positive sentiment score (β=0.29, p < 0.001) and a higher positive emotions score (β = 0.16, p < 0.001). MSM who reported more on their health status had a lower positive sentiment score (β = -0.83, p < 0.001) and a lower positive emotions score (β = -0.37, p < 0.001). The study concluded that psychological intervention based on an app for MSM should be conducted, as it may improve mental health.

Keywords: Affect, men who have sex with men, sexual-related behaviors, health-related status, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
24 Semantic Enhanced Social Media Sentiments for Stock Market Prediction

Authors: K. Nirmala Devi, V. Murali Bhaskaran

Abstract:

Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.

Keywords: Bag of Words, Collective Sentiments, Ontology, Semantic relations, Sentiments, Social media, Stock Prediction, Twitter, Vector Space Model and wisdom of crowds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
23 Fuzzy Set Approach to Study Appositives and Its Impact Due to Positional Alterations

Authors: E. Mike Dison, T. Pathinathan

Abstract:

Computing with Words (CWW) and Possibilistic Relational Universal Fuzzy (PRUF) are the two concepts which widely represent and measure the vaguely defined natural phenomenon. In this paper, we study the positional alteration of the phrases by which the impact of a natural language proposition gets affected and/or modified. We observe the gradations due to sensitivity/feeling of a statement towards the positional alterations. We derive the classification and modification of the meaning of words due to the positional alteration. We present the results with reference to set theoretic interpretations.

Keywords: Appositive, computing with words, PRUF, semantic sentiment analysis, set theoretic interpretations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
22 A Novel Web Metric for the Evaluation of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

Web 2.0 (social networking, blogging and online forums) can serve as a data source for social science research because it contains vast amount of information from many different users. The volume of that information has been growing at a very high rate and becoming a network of heterogeneous data; this makes things difficult to find and is therefore not almost useful. We have proposed a novel theoretical model for gathering and processing data from Web 2.0, which would reflect semantic content of web pages in better way. This article deals with the analysis part of the model and its usage for content analysis of blogs. The introductory part of the article describes methodology for the gathering and processing data from blogs. The next part of the article is focused on the evaluation and content analysis of blogs, which write about specific trend.

Keywords: Blog, Sentiment Analysis, Web 2.0, Webometrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542
21 Models of State Organization and Influence over Collective Identity and Nationalism in Spain

Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel

Abstract:

The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.

Keywords: Models of organization of the state, nationalism, collective identity, Spain, political parties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
20 Identity Politics of Former Soviet Koreans: One of the Most Prominent Heritages of the 1988 Seoul Olympics

Authors: Soon-ok Myong, B.G. Nurzhanov

Abstract:

This paper applies an anthropological approach to illuminate the dynamic cultural geography of Kazakhstani Korean ethnicity focusing on its turning point, the historic “Seoul Olympic Games in 1988." The Korean ethnic group was easily considered as a harmonious and homogeneous community by outsiders, but there existed deep-seated conflicts and hostilities within the ethnic group. The majority-s oppositional dichotomy of superiority and inferiority toward the minority was continuously reorganized and reinforced by difference in experience, memory and sentiment. However, such a chronic exclusive boundary was collapsed following the patriotism ignited by the Olympics held in their mother country. This paper explores the fluidity of subject by formation of the boundary in which constructed cultural differences are continuously essentialized and reproduced, and by dissolution of cultural barrier in certain contexts.

Keywords: Former Soviet Korean's Russianization, inferior/superior dichotomy, Seoul Olympic Games, subject's fluidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
19 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
18 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3849
17 Online Forums Hotspot Detection and Analysis Using Aging Theory

Authors: K. Nirmala Devi, V. Murali Bhaskaran

Abstract:

The exponential growth of social media arouses much attention on public opinion information. The online forums, blogs, micro blogs are proving to be extremely valuable resources and are having bulk volume of information. However, most of the social media data is unstructured and semi structured form. So that it is more difficult to decipher automatically. Therefore, it is very much essential to understand and analyze those data for making a right decision. The online forums hotspot detection is a promising research field in the web mining and it guides to motivate the user to take right decision in right time. The proposed system consist of a novel approach to detect a hotspot forum for any given time period. It uses aging theory to find the hot terms and E-K-means for detecting the hotspot forum. Experimental results demonstrate that the proposed approach outperforms k-means for detecting the hotspot forums with the improved accuracy.

Keywords: Hotspot forums, Micro blog, Blog, Sentiment Analysis, Opinion Mining, Social media, Twitter, Web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
16 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
15 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: Opinion mining, product feature extraction, sentiment analysis, SentiWordNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
14 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which, in turn, are affected by geopolitical uncertainty, oil price volatility and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: Valuation, property rights, information, institutions, trust, salience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
13 A Review of Lortie’s Schoolteacher

Authors: Tsai-Hsiu Lin

Abstract:

Dan C. Lortie’s Schoolteacher: A sociological study is one of the best works on the sociology of teaching since W. Waller’s classic study. It is a book worthy of review. Following the tradition of symbolic interactionists, Lortie demonstrated the qualities who studied the occupation of teaching. Using several methods to gather effective data, Lortie has portrayed the ethos of the teaching profession. Therefore, the work is an important book on the teaching profession and teacher culture. Though outstanding, Lortie’s work is also flawed in that his perspectives and methodology were adopted largely from symbolic interactionism. First, Lortie in his work analyzed many points regarding teacher culture; for example, he was interested in exploring “sentiment,” “cathexis,” and “ethos.” Thus, he was more a psychologist than a sociologist. Second, symbolic interactionism led him to discern the teacher culture from a micro view, thereby missing the structural aspects. For example, he did not fully discuss the issue of gender and he ignored the issue of race. Finally, following the qualitative sociological tradition, Lortie employed many qualitative methods to gather data but only foucused on obtaining and presenting interview data. Moreover, he used measurement methods that were too simplistic for analyzing quantitative data fully.

Keywords: Lortie’s Schooltacher, Symbolic interactionism, teacher culture, teaching profession.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4237
12 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies

Authors: Kanika Sood, Sijie Shang

Abstract:

A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.

Keywords: Bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, Natural Language Processing, online learning, sentiment analysis, teaching pedagogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80
11 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats

Authors: Ashly Joseph

Abstract:

Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.

Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185
10 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
9 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
8 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
7 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
6 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: B. Golchin, N. Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
5 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
4 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: Tourism, hotel recommender system, hybrid, implicit features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
3 Creation of Economic and Social Value by Social Entrepreneurship for Sustainable Development

Authors: Ahaskar Pandey, Gaurav Mukherjee, Sushil Kumar

Abstract:

The ever growing sentiment of environmentalism across the globe has made many people think on the green lines. But most of such ideas halt short of implementation because of the short term economic viability issues with the concept of going green. In this paper we have tried to amalgamate the green concept with social entrepreneurship for solving a variety of issues faced by the society today. In addition the paper also tries to ensure that the short term economic viability does not act as a deterrent. The paper comes up three sustainable models of social entrepreneurship which tackle a wide assortment of issues such as nutrition problem, land problems, pollution problems and employment problems. The models described fall under the following heads: - Spirulina cultivation: The model addresses nutrition, land and employment issues. It deals with cultivation of a blue green alga called Spirulina which can be used as a very nutritious food. Also, the implementation of this model would bring forth employment to the poor people of the area. - Biocomposites: The model comes up with various avenues in which biocomposites can be used in an economically sustainable manner. This model deals with the environmental concerns and addresses the depletion of natural resources. - Packaging material from empty fruit bunches (EFB) of oil palm: This one deals with air and land pollution. It is intended to be a substitute for packaging materials made from Styrofoam and plastics which are non-biodegradable. It takes care of the biodegradability and land pollution issues. It also reduces air pollution as the empty fruit bunches are not incinerated. All the three models are sustainable and do not deplete the natural resources any further. This paper explains each of the models in detail and deals with the operational/manufacturing procedures and cost analysis while also throwing light on the benefits derived and sustainability aspects.

Keywords: Biodegradable, Pollution, Social entrepreneurship, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
2 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1 Satisfaction Survey of a Displaced Population Affected by a New Planned Development of Naya Raipur, India

Authors: Sagar Jajoo

Abstract:

Urban planning is the need of the hour in a rapidly developing county like India. In essence, urban planning enhances the quality of land at a reasonable cost. Naya (New) Raipur is the new planned capital of the Indian state of Chhattisgarh, and is one of India’s few planned cities. Over the next decade it will drastically change the landscape of the state of Chhattisgarh. This new planned development is quintessential in growing this backward region and providing for future infrastructure. Key questions that arise are: How are people living in the surrounding region of New Raipur affected by its development? Are the affected people satisfied with compensation and rehabilitation that has been provided by the New Raipur Development Authority? To answer these questions, field research study in the form of questionnaires, interviews and site visits was conducted. To summarize the findings, while a majority of the surveyed population was dissatisfied with the rehabilitation and compensation provided by the New Raipur Development Authority, they were very positive about the success of the new development. Most thought that the new city would help their careers, improve job opportunities, improve prospects for their future generations, and benefit society as a whole.

To improve rehabilitation schemes for the future, the reasons for the negative sentiment brewing amongst the villagers regarding the monetary compensation was investigated. Most villagers deemed the monetary compensation to be lacking as they had squandered their financial windfall already. With numerous interviews and site visits, it was discovered that the lump sum form of monetary compensation was to blame. With a huge sum of money received at once and a lack of financial education, many villagers squandered this newly gained money on unnecessary purchases such as alcohol and expensive vehicles without investing for the long run in farmland and education for their children. One recommendation proposed to the New Raipur Development Authority (NRDA) for future monetary compensation design in times of rehabilitating people was to provide payments in installments rather than lump sums and educate the people about investing the compensation money wisely. This would save them from wasting money they receive and the ensuing dissatisfaction of squandering that money.

Keywords: Compensation, Naya Raipur, Rehabilitation, Satisfaction Survey, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838