Search results for: objectionable Web content classification
2246 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier
Authors: Khin May Win, Nan Sai Moon Kham
Abstract:
Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472245 Combining ILP with Semi-supervised Learning for Web Page Categorization
Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul
Abstract:
This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.
Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492244 An Experimental Study on Autoignition of Wood
Authors: Tri Poespowati
Abstract:
Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.Keywords: Fire properties, moisture content, wood, charring rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20652243 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).
Keywords: Motion detection, motion tracking, trajectory analysis, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17372242 Effect of Rearing Systems on Fatty Acid Composition and Cholesterol Content of Thai Indigenous Chicken Meat
Authors: W. Molee, P. Puttaraksa, S. Khempaka
Abstract:
The experiment was conducted to study the effect of rearing systems on fatty acid composition and cholesterol content of Thai indigenous chicken meat. Three hundred and sixty chicks were allocated to 2 different rearing systems: conventional, housing in an indoor pen (5 birds/m2); free-range, housing in an indoor pen (5 birds/m2) with access to a grass paddock (1 bird/m2) from 8 wk of age until slaughter. All birds were provided with the same diet during the experimental period. At 16 wk of age, 24 birds per group were slaughtered to evaluate the fatty acid composition and cholesterol content of breast and thigh meat. The results showed that the proportion of SFA, MUFA and PUFA in breast and thigh meat were not different among groups (P>0.05). However, the proportion of n-3 fatty acids was higher and the ratio of n-6 to n-3 fatty acids was lower in free-range system than in conventional system (P<0.05). There was no difference between groups in cholesterol content in breast and thigh meat (P>0.05). The data indicated that the free-range system could increase the proportion of n-3 fatty acids, but no effect on cholesterol content in Thai indigenous chicken meat.Keywords: Cholesterol, fatty acid composition, free-range, Thai indigenous chicken
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262241 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8742240 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16682239 Tropical Peat Soil Stabilization using Class F Pond Ash from Coal Fired Power Plant
Authors: Kolay, P.K., Sii, H. Y., Taib, S.N.L.
Abstract:
This paper presents the stabilization potential of Class F pond ash (PA) from a coal fired thermal power station on tropical peat soil. Peat or highly organic soils are well known for their high compressibility, natural moisture content, low shear strength and long-term settlement. This study investigates the effect of different amount (i.e., 5, 10, 15 and 20%) of PA on peat soil, collected from Sarawak, Malaysia, mainly compaction and unconfined compressive strength (UCS) properties. The amounts of PA added to the peat soil sample as percentage of the dry peat soil mass. With the increase in PA content, the maximum dry density (MDD) of peat soil increases, while the optimum moisture content (OMC) decreases. The UCS value of the peat soils increases significantly with the increase of PA content and also with curing periods. This improvement on compressive strength of tropical peat soils indicates that PA has the potential to be used as a stabilizer for tropical peat soil. Also, the use of PA in soil stabilization helps in reducing the pond volume and achieving environment friendly as well as a sustainable development of natural resources.Keywords: Compaction, Peat soil, Pond ash, Stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33752238 Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction
Authors: Patcharin Worathanakul, Wisaroot Payubnop, Akhapon Muangpet
Abstract:
Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and Fourier Transform Infrared Spectroscopy method,. The synthesis conditions were optimized to obtain the bagasse ash with the maximum silica content. The silica content of 91.57 percent was achieved from heating of bagasse ash at 600°C for 3 hours under oxygen feeding and HCl treatment. The result can be used as value added for bagasse ash utilization and minimize the environmental impact of disposal problems.Keywords: Bagasse ash, synthesis, silica, extraction, posttreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38242237 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.
Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17712236 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks
Authors: Maya S. Rathod, Bahadur Singh Hathan
Abstract:
Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, antioxidant activity, total phenolic content, and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100g premix having 16.8% moisture content (w.b).Keywords: Extrusion, mustard leaves powder, optimization, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21782235 A Novel Technique for Ferroresonance Identification in Distribution Networks
Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor
Abstract:
Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.
Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14322234 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042233 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network
Authors: Katsumi Hirata
Abstract:
Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.
Keywords: Bispectrum, convolutional neural network, environmental sound, slice bispectrogram, spectrogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6262232 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)
Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,
Abstract:
One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.
Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20252231 Semantic Mobility Channel (SMC): Ubiquitous and Mobile Computing Meets the Semantic Web
Authors: José M. Cantera, Miguel Jiménez, Genoveva López, Javier Soriano
Abstract:
With the advent of emerging personal computing paradigms such as ubiquitous and mobile computing, Web contents are becoming accessible from a wide range of mobile devices. Since these devices do not have the same rendering capabilities, Web contents need to be adapted for transparent access from a variety of client agents. Such content adaptation is exploited for either an individual element or a set of consecutive elements in a Web document and results in better rendering and faster delivery to the client device. Nevertheless, Web content adaptation sets new challenges for semantic markup. This paper presents an advanced components platform, called SMC, enabling the development of mobility applications and services according to a channel model based on the principles of Services Oriented Architecture (SOA). It then goes on to describe the potential for integration with the Semantic Web through a novel framework of external semantic annotation that prescribes a scheme for representing semantic markup files and a way of associating Web documents with these external annotations. The role of semantic annotation in this framework is to describe the contents of individual documents themselves, assuring the preservation of the semantics during the process of adapting content rendering. Semantic Web content adaptation is a way of adding value to Web contents and facilitates repurposing of Web contents (enhanced browsing, Web Services location and access, etc).
Keywords: Semantic web, ubiquitous and mobile computing, web content transcoding. semantic mark-up, mobile computing, middleware and services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162230 Wavelet-Based ECG Signal Analysis and Classification
Authors: Madina Hamiane, May Hashim Ali
Abstract:
This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm. The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.
Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12842229 Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster
Authors: H. Harada, S. Nishida, T. Nagumo, M. Endo, H. Watari
Abstract:
This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.Keywords: AZ91, AZ111, AZ121, Magnesium alloys, Twin roll casting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20382228 Hybrid Machine Learning Approach for Text Categorization
Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite
Abstract:
Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.
Keywords: Text categorization, decision trees, neural networks, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18092227 STATISTICA Software: A State of the Art Review
Authors: S. Sarumathi, N. Shanthi, S. Vidhya, P. Ranjetha
Abstract:
Data mining idea is mounting rapidly in admiration and also in their popularity. The foremost aspire of data mining method is to extract data from a huge data set into several forms that could be comprehended for additional use. The data mining is a technology that contains with rich potential resources which could be supportive for industries and businesses that pay attention to collect the necessary information of the data to discover their customer’s performances. For extracting data there are several methods are available such as Classification, Clustering, Association, Discovering, and Visualization… etc., which has its individual and diverse algorithms towards the effort to fit an appropriate model to the data. STATISTICA mostly deals with excessive groups of data that imposes vast rigorous computational constraints. These results trials challenge cause the emergence of powerful STATISTICA Data Mining technologies. In this survey an overview of the STATISTICA software is illustrated along with their significant features.
Keywords: Data Mining, STATISTICA Data Miner, Text Miner, Enterprise Server, Classification, Association, Clustering, Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26162226 Automated Particle Picking based on Correlation Peak Shape Analysis and Iterative Classification
Authors: Hrabe Thomas, Beck Florian, Nickell Stephan
Abstract:
Cryo-electron microscopy (CEM) in combination with single particle analysis (SPA) is a widely used technique for elucidating structural details of macromolecular assemblies at closeto- atomic resolutions. However, development of automated software for SPA processing is still vital since thousands to millions of individual particle images need to be processed. Here, we present our workflow for automated particle picking. Our approach integrates peak shape analysis to the classical correlation and an iterative approach to separate macromolecules and background by classification. This particle selection workflow furthermore provides a robust means for SPA with little user interaction. Processing simulated and experimental data assesses performance of the presented tools.Keywords: Cryo-electron Microscopy, Single Particle Analysis, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16732225 Mounting Time Reduction using Content-Based Block Management for NAND Flash File System
Authors: Won-Hee Cho, GeunHyung Lee, Deok-Hwan Kim
Abstract:
The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. The YAFFS, one of the NAND flash file system, is widely used in the embedded device. However, the existing YAFFS takes long time to mount the file system because it scans whole spare areas in all pages of NAND flash memory. In order to solve this problem, we propose a new content-based flash file system using a mounting time reduction technique. The proposed method only scans partial spare areas of some special pages by using content-based block management. The experimental results show that the proposed method reduces the average mounting time by 87.2% comparing with JFFS2 and 69.9% comparing with YAFFS.
Keywords: NAND Flash Memory, Mounting Time, YAFFS, JFFS2, Content-based Block management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16872224 A New Model for Question Answering Systems
Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour
Abstract:
Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems. If this module doesn't work properly, it will make problems for other sections. Moreover answer processing module is an emerging topic in Question Answering, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic classification. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. Answer processing module, consists of candidate answer filtering, candidate answer ordering components and also it has a validation section for interacting with user. This module makes it more suitable to find exact answer. In this paper we have described question and answer processing modules with modeling, implementing and evaluating the system. System implemented in two versions. Results show that 'Version No.1' gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and 'version No.2' gave correct answers to 94% of questions (47 correct answers to 50 asked questions).Keywords: Answer Processing, Classification, QuestionAnswering and Query Reformulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21292223 Heritage Tree Expert Assessment and Classification: Malaysian Perspective
Authors: B.-Y.-S. Lau, Y.-C.-T. Jonathan, M.-S. Alias
Abstract:
Heritage trees are natural large, individual trees with exceptionally value due to association with age or event or distinguished people. In Malaysia, there is an abundance of tropical heritage trees throughout the country. It is essential to set up a repository of heritage trees to prevent valuable trees from being cut down. In this cross domain study, a web-based online expert system namely the Heritage Tree Expert Assessment and Classification (HTEAC) is developed and deployed for public to nominate potential heritage trees. Based on the nomination, tree care experts or arborists would evaluate and verify the nominated trees as heritage trees. The expert system automatically rates the approved heritage trees according to pre-defined grades via Delphi technique. Features and usability test of the expert system are presented. Preliminary result is promising for the system to be used as a full scale public system.Keywords: Arboriculture, Delphi, expert system, heritage tree, urban forestry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14502222 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach
Authors: N. Shanmugapriya, R. Nallusamy
Abstract:
Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.
Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20482221 Dynamic Features Selection for Heart Disease Classification
Authors: Walid MOUDANI
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25382220 Chemical and Sensorial Evaluation of a Newly Developed Bean Jam
Authors: Raquel P. F. Guiné, Ana R. B. Figueiredo, Paula M. R. Correia, Fernando J. Gonçalves
Abstract:
The purpose of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. The product, a jam, was prepared with the beans’ cooking water combined with fresh apple or carrot, without the addition of any conservatives. Three different jams were produced: bean and carrot, bean and apple and bean, apple and cinnamon. The developed products underwent a sensorial analysis that revealed that the bean, apple and cinnamon jam was globally better accepted. However, with this study, the consumers determined that the bean and carrot jam had the most attractive color and the bean and apple jam the better consistency. Additionally, it was possible to analyze the jams for their chemical components, namely fat, fiber, protein, sugars and antioxidant activity. The obtained results showed that the bean and carrot jam had the highest lipid content, while the bean, apple and cinnamon jam had the highest fiber content, when compared to the other two jams. Regarding the sugar content, both jams with apple revealed similar sugar values, which were higher than the sugar content of the bean and carrot jam. The antioxidant activity was on average 10 mg TE/g.
Keywords: Bean jam, chemical composition, sensorial analysis, product acceptability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21382219 Determination of Moisture Content and Liquid Limit of Foundations Soils, using Microwave Radiation, in the Different Locations of Sulaimani Governorate, Kurdistan Region-Iraq
Authors: Heyam Daod
Abstract:
Soils are normally dried in either a convection oven or stove. Laboratory moisture content testing indicated that the typical drying durations for a convection oven were, 24 hours. The purpose of this study was to determine the accuracy and soil drying duration of both, moisture content and liquid limit using microwave radiation. The soils were tested with both, convection and microwave ovens. The convection oven was considered to produce the true values for both, natural moisture content and liquid limit of soils; it was, therefore, used as a basis for comparison for the results of the microwave ovens. The samples used in this study were obtained from different projects of Consulting Engineering Bureau of College of Engineering of Sulaimani University. These samples were collected from different locations and at the different depths and consist mostly of brown and light brown clay and silty clay. A total of 102 samples were prepared. 26 of them were tested for natural moisture determination, while the other 76 were used for liquid limits determination
Keywords: Fine-grained soils, liquid limit, microwave drying,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47082218 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.
Keywords: Big Data, Social Networks, Sentiment Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43522217 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850