Search results for: Support vector machines
2120 Negotiation Support for Value-based Decision in Construction
Authors: Christiono Utomo, Arazi Idrus, Isnanto, Annisa Nugraheni, Farida Rahmawati
Abstract:
A Negotiation Support is required on a value-based decision to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. This study demonstrates a process of negotiation support model for selection of a building system from value-based design perspective. The perspective is based on comparison of function and cost of a building system. Multi criteria decision techniques were applied to determine the relative value of the alternative solutions for performing the function. A satisfying option game theory are applied to the criteria of value-based decision which are LCC (life cycle cost) and function based FAST. The results demonstrate a negotiation process to select priorities of a building system. The support model can be extended to an automated negotiation by combining value based decision method, group decision and negotiation support.
Keywords: NSS, Value-based, Decision, Construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17302119 The Modified Eigenface Method using Two Thresholds
Authors: Yan Ma, ShunBao Li
Abstract:
A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14952118 Temporal Case-Based Reasoning System for Automatic Parking Complex
Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy
Abstract:
In this paper the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.Keywords: Analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19792117 Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies
Authors: Moustafa A. Bani-Hasan, Yasser M. Kadah, Fatma M. El-Hefnawi
Abstract:
An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).Keywords: Arrhythmias analysis, electrocardiogram, featureextraction, statistical classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20752116 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17512115 Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame
Authors: G. R. Arab Markadeh, J. Soltani, N. R. Abjadi, M. Hajian
Abstract:
In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.Keywords: Stator FOC, Multiphase motors, sensorless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20092114 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems
Authors: Abdellatif Kasbi, Abderrafii Rahali
Abstract:
This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.
Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7092113 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17132112 Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm
Authors: R.A.Mahdavinejad
Abstract:
In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.
Keywords: Job shops scheduling, Priority dispatching rules, Makespan, Hybrid heuristic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16692111 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System
Abstract:
Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.Keywords: Ubiquitous architecture, verification, Identification, recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13362110 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.
Keywords: Rubber bumper, data acquisition, finite element analysis, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21482109 Investigation on Feature Extraction and Classification of Medical Images
Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30132108 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection
Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan
Abstract:
This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market
Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31682107 T-DOF PI Controller Design for a Speed Control of Induction Motor
Authors: Tianchai Suksri, Satean Tunyasrirut
Abstract:
This paper presents design and implements the T-DOF PI controller design for a speed control of induction motor. The voltage source inverter type space vector pulse width modulation technique is used the drive system. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the input voltage. The ratio of input stator voltage to frequency should be kept constant. The T-DOF PI controller design by root locus technique is also introduced to the system for regulates and tracking speed response. The experimental results in testing the 120 watt induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.Keywords: PI controller, root locus technique, space vector pulse width modulation, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21442106 The Application of Learning Systems to Support Decision for Stakeholder and Infrastructures Managers Based On Crowdsourcing
Authors: Alfonso Bastías, Álvaro González
Abstract:
The actual grow of the infrastructure in develop country require sophisticate ways manage the operation and control the quality served. This research wants to concentrate in the operation of this infrastructure beyond the construction. The infrastructure-s operation involves an uncertain environment, where unexpected variables are present every day and everywhere. Decision makers need to make right decisions with right information/data analyzed most in real time. To adequately support their decisions and decrease any negative impact and collateral effect, they need to use computational tools called decision support systems (DSS), but now the main source of information came from common users thought an extensive crowdsourcing
Keywords: Crowdsourcing, Learning Systems, Decision Support Systems, Infrastructure, Construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16352105 Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator
Authors: A. Ameur, B. Mokhtari, N. Essounbouli, L. Mokrani
Abstract:
This paper presents a speed sensorless direct torque control scheme using space vector modulation (DTC-SVM) for permanent magnet synchronous motor (PMSM) drive based a Model Reference Adaptive System (MRAS) algorithm and stator resistance estimator. The MRAS is utilized to estimate speed and stator resistance and compensate the effects of parameter variation on stator resistance, which makes flux and torque estimation more accurate and insensitive to parameter variation. In other hand the use of SVM method reduces the torque ripple while achieving a good dynamic response. Simulation results are presented and show the effectiveness of the proposed method.Keywords: MRAS, PMSM, SVM, DTC, Speed and Resistance estimation, Sensorless drive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38692104 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images
Authors: A. Nachour, L. Ouzizi, Y. Aoura
Abstract:
Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.
Keywords: Edge detection, medical MR images, multi-agent systems, vector field convolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042103 Kalman Filter Gain Elimination in Linear Estimation
Authors: Nicholas D. Assimakis
Abstract:
In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.
Keywords: Discrete time, linear estimation, Kalman filter, Kalman filter gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6402102 A Control Strategy Based on UTT and ISCT for 3P4W UPQC
Authors: Yash Pal, A.Swarup, Bhim Singh
Abstract:
This paper presents a novel control strategy of a threephase four-wire Unified Power Quality (UPQC) for an improvement in power quality. The UPQC is realized by integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a thee-phase, four leg voltage source inverter (VSI) and the series APF is realized using a three-phase, three leg VSI. A control technique based on unit vector template technique (UTT) is used to get the reference signals for series APF, while instantaneous sequence component theory (ISCT) is used for the control of Shunt APF. The performance of the implemented control algorithm is evaluated in terms of power-factor correction, load balancing, neutral source current mitigation and mitigation of voltage and current harmonics, voltage sag and swell in a three-phase four-wire distribution system for different combination of linear and non-linear loads. In this proposed control scheme of UPQC, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, there by reducing the computational delay and the required sensors. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC.Keywords: Power Quality, UPQC, Harmonics, Load Balancing, Power Factor Correction, voltage harmonic mitigation, currentharmonic mitigation, voltage sag, swell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22712101 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms
Authors: Nebi Gedik
Abstract:
One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).
Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8822100 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.
Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11372099 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22422098 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9422097 Comparative Study of Filter Characteristics as Statistical Vocal Correlates of Clinical Psychiatric State in Human
Authors: Thaweesak Yingthawornsuk, Chusak Thanawattano
Abstract:
Acoustical properties of speech have been shown to be related to mental states of speaker with symptoms: depression and remission. This paper describes way to address the issue of distinguishing depressed patients from remitted subjects based on measureable acoustics change of their spoken sound. The vocal-tract related frequency characteristics of speech samples from female remitted and depressed patients were analyzed via speech processing techniques and consequently, evaluated statistically by cross-validation with Support Vector Machine. Our results comparatively show the classifier's performance with effectively correct separation of 93% determined from testing with the subjectbased feature model and 88% from the frame-based model based on the same speech samples collected from hospital visiting interview sessions between patients and psychiatrists.Keywords: Depression, SVM, Vocal Extract, Vocal Tract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15412096 Molluscicidal Effects of Ageratum conyzoides and Datura stramonium on Bulinus globosus and Lymnea natalensis
Authors: Olofintoye Lawrence Kayode, Olorunniyi Omojola Felix
Abstract:
Schistosomiasis is a vector-borne water-based disease transmitted by Bulinus globosus, causing haematuria in the urine of man, while fascioliasis is a trematode zoonosis infectious transmitted by Lymnaea natalensis causing liver disease in man and animals. Adult Bulinus globosus and Lymnaea natalensis were used for the experiment. Aqueous leaf extract of Ageratum conyzoides and Datura stramonium were prepared into 25, 50, 75, 100, 200 and 400 ppm concentrations. Ten snails of each species were exposed to different concentrations in triplicates, and dechlorinated water was used as control at 24h, 48h, and 72h exposure. The results revealed that 100 ppm of both plants leaves extracts indicated mortality rates between 76.7% and 100% at 24h, 48h, and 72h for both snail species. (P < 0.05). In conclusion, the extract exercised molluscicidal activity to control the snail vector at lethal doses LC50 (66.611-72.021 ppm), CI = 63.083-77.90 ppm and LC90 (92.623-102.350), CI = 87.715-110.12 ppm.
Keywords: Snail, plant leaf, aqueous extract, mortality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162095 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.
Keywords: Bottleneck, Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9562094 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin
Abstract:
There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.Keywords: Cloud computing, energy utilization, power consumption, resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14422093 e Collaborative Decisions – a DSS for Academic Environment
Authors: C. Oprean, C. V. Kifor, S. C. Negulescu, C. Candea, L. Oprean, C. Oprean, S. Kifor
Abstract:
This paper presents an innovative approach within the area of Group Decision Support System (GDSS) by using tools based on intelligent agents. It introduces iGDSS, a software platform for decision support and collaboration and an application of this platform - eCollaborative Decisions - for academic environment, all these developed within a framework of a research project.
Keywords: Group Decision Support System, Managerial Academic Decisions, Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942092 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering
Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem
Abstract:
Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.
Keywords: Grid–based clustering, SVC, Density function, Radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17442091 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge
Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang
Abstract:
Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.Keywords: Text classification, Text clustering, Text similarity, Wikipedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117