Search results for: Vacuum insulation panels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 393

Search results for: Vacuum insulation panels

3 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
2 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: High performance concrete, special concrete, structural design, structural lightweight concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
1 Effects of Pterocarpus mildbraedii Leaf Extract and Its Fractions on Cadmium and Lead Chloride-Induced Testicular Damage in Male Albino Rats

Authors: R. U. Hamzah, H. L. Muhammad, A. Sayyadi, M. B Busari, R. Garba, M. B. Umar, A. N Abubakar

Abstract:

Lead (Pb) and Cadmium (Cd) are toxic, non-essential transition metals that pose many health risks for both humans and animals. They are environmental toxicants which contribute to testicular damage resulting to infertility problem among male populace worldwide. Chelating agents used for lead and cadmium toxicity are not readily available, toxic, expensive and unable to mop up most of the toxic metals accumulated in various organs. In this study, the effect of crude extract (CE), ethyl acetate fraction (EF) and acetone fraction (AF) of Pterocarpus mildbraedii leaf extract was assessed on cadmium-lead chloride induced testicular damaged in male albino Wistar rats. CE of the leaf was obtained by extracting in absolute methanol which was further subjected to solvent partitioning via vacuum liquid chromatographic (VLC) techniques using ethyl acetate, acetone and 70% methanol. A preliminary phytochemical screening and in vitro antioxidants guided activities on the CE and fractions were determined using standard methods. EF, AF and CE which exhibited significant in vitro activity were subjected to an in vivo study using Wistar rats. In vivo antioxidant markers, male reproductive hormones, testicular enzymes and DNA damage markers were analyzed on the rats’ testes supernatant. AF had the highest quantities of phenols (319.00 mg/g), flavonoids (8.87 mg/g) and tannins (8.87 mg/g) while methanol and EFs were richer in saponins (135.32 µg/g) and alkaloids (38.34 µg/g) respectively. A dose dependent 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP) and lipid peroxidation were observed in all the extract with high antioxidants power in CE and AF. Administration of lead-cadmium chloride solution significantly (p > 0.05) decreases the testicular superoxide dismutase (SOD) activity to 6.82 unit/mg protein, Catalase (CAT) activity to 8.07 of H2O2 consumed/unit/mg protein and Glutathione (GSH) concentration to 31.30 ug/mg protein. There was a concomitant increase in the level of Malondialdehyde (MDA) to a value of 23.70 mmol/mg protein. In addition, lead-cadmium chloride solution significantly (p > 0.05) increases the testicular marker enzymes (Alkaline phosphatase (119.57 u/L), lactate dehydrogenase (357.05 u/L), Acid phosphatase (98.65 u/L)) and DNA damage markers (conjugated dienes (93.39 nmol/mg protein), carbonyl protein (35.39 nmol/mg protein), DNA fragmentation percentage (32.12%)) with lowered testicular hormones (Testosterone (3.1 ng/mL), Follicle stimulating (0.35 IU/mL) and Luteinizing hormones (0.15 IU/mL)) of the animals in negative control group when compared with other treated groups. Treatment with Pterocarpus mildbraedii leaf extract reverts the observed changes with the best activities found in the CE and AFs in a dose dependent manner. Pterocarpus mildbraedii leaf extract ameliorated the lead/cadmium induced testicular damage in male albino rats. The restoration of the aforementioned parameters by some of the extract dosages were comparable to the standard drug with higher activities in the crude and AF. Therefore, Pterocarpus mildbraedii leaf extract can be explored further for the management of lead/cadmium induced toxicity.

Keywords: Cadmium, lead, Pterocarpus mildbraedii, testicular damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 363