Search results for: trajectories mathematical proves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2324

Search results for: trajectories mathematical proves

2174 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 379
2173 A Biomechanical Model for the Idiopathic Scoliosis Using the Antalgic-Trak Technology

Authors: Joao Fialho

Abstract:

The mathematical modelling of idiopathic scoliosis has been studied throughout the years. The models presented on those papers are based on the orthotic stabilization of the idiopathic scoliosis, which are based on a transversal force being applied to the human spine on a continuous form. When considering the ATT (Antalgic-Trak Technology) device, the existent models cannot be used, as the type of forces applied are no longer transversal nor applied in a continuous manner. In this device, vertical traction is applied. In this study we propose to model the idiopathic scoliosis, using the ATT (Antalgic-Trak Technology) device, and with the parameters obtained from the mathematical modeling, set up a case-by-case individualized therapy plan, for each patient.

Keywords: idiopathic scoliosis, mathematical modelling, human spine, Antalgic-Trak technology

Procedia PDF Downloads 237
2172 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 200
2171 Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials

Authors: Meryem Kanzari, Rabah Boukhanouf, Hatem G. Ibrahim

Abstract:

Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show that the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.

Keywords: indirect evaporative cooling, porous ceramic, sub-wet bulb temperature, mathematical modeling

Procedia PDF Downloads 267
2170 Mathematics Model Approaching: Parameter Estimation of Transmission Dynamics of HIV and AIDS in Indonesia

Authors: Endrik Mifta Shaiful, Firman Riyudha

Abstract:

Acquired Immunodeficiency Syndrome (AIDS) is one of the world's deadliest diseases caused by the Human Immunodeficiency Virus (HIV) that infects white blood cells and cause a decline in the immune system. AIDS quickly became a world epidemic disease that affects almost all countries. Therefore, mathematical modeling approach to the spread of HIV and AIDS is needed to anticipate the spread of HIV and AIDS which are widespread. The purpose of this study is to determine the parameter estimation on mathematical models of HIV transmission and AIDS using cumulative data of people with HIV and AIDS each year in Indonesia. In this model, there are parameters of r ∈ [0,1) which is the effectiveness of the treatment in patients with HIV. If the value of r is close to 1, the number of people with HIV and AIDS will decline toward zero. The estimation results indicate when the value of r is close to unity, there will be a significant decline in HIV patients, whereas in AIDS patients constantly decreases towards zero.

Keywords: HIV, AIDS, parameter estimation, mathematical models

Procedia PDF Downloads 219
2169 The Theory of Number "0"

Authors: Iryna Shevchenko

Abstract:

The science of mathematics was originated at the order of count of objects and subsequently for the measurement of size and quality of objects using the logical or abstract means. The laws of mathematics are based on the study of absolute values. The number 0 or "nothing" is the purely logical (as the opposite to absolute) value as the "nothing" should always assume the space for the something that had existed there; otherwise the "something" would never come to existence. In this work we are going to prove that the number "0" is the abstract (logical) and not an absolute number and it has the absolute value of “∞” (infinity). Therefore, the number "0" might not stand in the row of numbers that symbolically represents the absolute values, as it would be the mathematically incorrect. The symbolical value of number "0" in the row of numbers could be represented with symbol "∞" (infinity). As a result, we have the mathematical row of numbers: epsilon, ...4, 3, 2, 1, ∞. As the conclusions of the theory of number “0” we presented the statements: multiplication and division by fractions of numbers is illegal operation and the mathematical division by number “0” is allowed.

Keywords: illegal operation of division and multiplication by fractions of number, infinity, mathematical row of numbers, theory of number “0”

Procedia PDF Downloads 515
2168 Comparative Study of Computer Assisted Instruction and Conventional Method in Attaining and Retaining Mathematical Concepts

Authors: Nirupma Bhatti

Abstract:

This empirical study was aimed to compare the effectiveness of Computer Assisted Instruction (CAI) and Conventional Method (CM) in attaining and retaining mathematical concepts. Instructional and measuring tools were developed for five units of Matrix Algebra, two of Calculus and five of Numerical Analysis. Reliability and validity of these tools were also examined in pilot study. Ninety undergraduates participated in this study. Pre-test – post-test equivalent – groups research design was used. SPSS v.16 was used for data analysis. Findings supported CAI as better mode of instruction for attainment and retention of basic mathematical concepts. Administrators should motivate faculty members to develop Computer Assisted Instructional Material (CAIM) in mathematics for higher education.

Keywords: attainment, CAI, CAIM, conventional method, retention

Procedia PDF Downloads 157
2167 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron

Authors: Filippo Portera

Abstract:

Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.

Keywords: loss, binary-classification, MLP, weights, regression

Procedia PDF Downloads 64
2166 Immediate Geometric Solution of Irregular Quadrilaterals: A Digital Tool Applied to Topography

Authors: Miguel Mariano Rivera Galvan

Abstract:

The purpose of this research was to create a digital tool by which users can obtain an immediate and accurate solution of the angular characteristics of an irregular quadrilateral. The development of this project arose because of the frequent absence of a polygon’s geometric information in land ownership accreditation documents. The researcher created a mathematical model using a linear approximation iterative method, employing various disciplines and techniques including trigonometry, geometry, algebra, and topography. This mathematical model uses as input data the surface of the quadrilateral, as well as the length of its sides, to obtain its interior angles and make possible its representation in a coordinate system. The results are as accurate and reliable as the user requires, offering the possibility of using this tool as a support to develop future engineering and architecture projects quickly and reliably.

Keywords: digital tool, geometry, mathematical model, quadrilateral, solution

Procedia PDF Downloads 118
2165 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 309
2164 Empowering Middle School Math Coordinators as Agents of Transformation: The Impact of the Mitar Program on Mathematical Literacy and Social-Emotional Learning Integration

Authors: Saleit Ron

Abstract:

The Mitar program was established to drive a shift in middle school mathematics education, emphasizing the connection of math to real-life situations, exploring mathematical modeling and literacy, and integrating social and emotional learning (SEL) components for enhanced excellence. The program envisions math coordinators as catalysts for change, equipping them to create educational materials, strengthen leadership skills, and develop SEL competencies within coordinator communities. These skills are then employed to lead transformative efforts within their respective schools. The program engaged 90 participants across six math coordinator communities during 2022-2023, involving 30-60 hours of annual learning. The process includes formative and summative evaluations through questionnaires and interviews, revealing participants' high contentment and successful integration of acquired skills into their schools. Reflections from participants highlighted the need for enhanced change leadership processes, often seeking more personalized mentoring to navigate challenges effectively.

Keywords: math coordinators, mathematical literacy, mathematical modeling, SEL competencies

Procedia PDF Downloads 31
2163 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 419
2162 Insect Outbreaks, Harvesting and Wildfire in Forests: Mathematical Models for Coupling Disturbances

Authors: M. C. A. Leite, B. Chen-Charpentier, F. Agusto

Abstract:

A long-term goal of sustainable forest management is a relatively stable source of wood and a stable forest age-class structure has become the goal of many forest management practices. In the absence of disturbances, this forest management goal could easily be achieved. However, in the face of recurring insect outbreaks and other disruptive processes forest planning becomes more difficult, requiring knowledge of the effects on the forest of a wide variety of environmental factors (e.g., habitat heterogeneity, fire size and frequency, harvesting, insect outbreaks, and age distributions). The association between distinct forest disturbances and the potential effect on forest dynamics is a complex matter, particularly when evaluated over time and at large scale, and is not well understood. However, gaining knowledge in this area is crucial for a sustainable forest management. Mathematical modeling is a tool that can be used to broader the understanding in this area. In this talk we will introduce mathematical models formulation incorporating the effect of insect outbreaks either as a single disturbance in the forest population dynamics or coupled with other disturbances: either wildfire or harvesting. The results and ecological insights will be discussed.

Keywords: age-structured forest population, disturbances interaction, harvesting insects outbreak dynamics, mathematical modeling

Procedia PDF Downloads 497
2161 Chronic Aflatoxin Exposure During Pregnancy Is Associated With Lower Fetal Growth Trajectories: A Prospective Cohort Study in Rural Ethiopia

Authors: K. Tesfamariam, S. Gebreyesus, C. Lachat, P. Kolsteren, S. De Saeger, M. De Boevre, A. Argaw

Abstract:

Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi, which are ubiquitously present in the food supplies of low- and middle-income countries. Studies of maternal aflatoxin exposure and fetal outcomes are mainly focused on size at birth and the effect on intrauterine fetal growth has not been assessed using repeated longitudinal fetal biometry across gestation. Therefore, this study intends to assess the association between chronic aflatoxin exposure during pregnancy and fetal growth trajectories in a rural Ethiopian setting. In a prospective cohort study, we enrolled 492 pregnant women. A phlebotomist collected 5 mL of a venous blood sample from eligible women before 28 completed weeks of gestation and aflatoxin B1-lysine concentration was determined using liquid chromatography-tandem mass spectrometry. The mean (±SD) gestational age was 19.1 (3.71) weeks at enrollment, and 28.5 (3.51) and 34.5 (2.44) weeks of gestation at the second and third rounds of ultrasound measurements, respectively. Estimated fetal weight was expressed in centiles using the INTERGROWTH-21st reference. We fitted a multivariable linear mixed-effects model to estimate the rate of fetal growth between aflatoxin-exposed (i.e., aflatoxin B1-lysine concentration above or equal to the limit of detection) and non-exposed mothers in the study. Mothers had a mean (±SD) age of 26.0 (4.58) years. The median (P25, P75) serum AFB1-lysine concentration was 12.6 (0.93, 96.9) pg/mg albumin, and aflatoxin exposure was observed in 86.6% of maternal blood samples. Eighty-five percent of the women enrolled provided at least two ultrasound measurements for analysis. On average, the aflatoxin-exposed group had a significantly lower change over time in fetal weight-for-gestational age centile than the unexposed group (ß = -1.01 centiles/week, 95% CI: -1.87, -0.15, p = 0.02). Chronic maternal AF exposure is associated with lower fetal weight gain over time. Our findings emphasize the importance of nutrition-sensitive strategies to mitigate dietary aflatoxin exposure as well as adopting food safety measures in low-income settings, particularly during the fetal period of development.

Keywords: aflatoxin, fetal growth, low-income setting, mycotoxins

Procedia PDF Downloads 102
2160 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics

Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu

Abstract:

Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.

Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 341
2159 Sediment Transport Monitoring in the Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando

Abstract:

The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.

Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,

Procedia PDF Downloads 200
2158 Visual Analytics of Higher Order Information for Trajectory Datasets

Authors: Ye Wang, Ickjai Lee

Abstract:

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches.

Keywords: visual analytics, higher order information, trajectory datasets, spatio-temporal data

Procedia PDF Downloads 382
2157 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: supply chain management, green supply chain, green design, green manufacturing, mathematical model

Procedia PDF Downloads 773
2156 Academic Motivation Maintenance for Students While Solving Mathematical Problems in the Middle School

Authors: M. Rodionov, Z. Dedovets

Abstract:

The level and type of student academic motivation are the key factors in their development and determine the effectiveness of their education. Improving motivation is very important with regard to courses on middle school mathematics. This article examines the general position regarding the practice of academic motivation. It also examines the particular features of mathematical problem solving in a school setting.

Keywords: teaching strategy, mathematics, motivation, student

Procedia PDF Downloads 424
2155 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis

Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri

Abstract:

In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.

Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum

Procedia PDF Downloads 443
2154 Mathematical Model to Quantify the Phenomenon of Democracy

Authors: Mechlouch Ridha Fethi

Abstract:

This paper presents a recent mathematical model in political sciences concerning democracy. The model is represented by a logarithmic equation linking the Relative Index of Democracy (RID) to Participation Ratio (PR). Firstly the meanings of the different parameters of the model were presented; and the variation curve of the RID according to PR with different critical areas was discussed. Secondly, the model was applied to a virtual group where we show that the model can be applied depending on the gender. Thirdly, it was observed that the model can be extended to different language models of democracy and that little use to assess the state of democracy for some International organizations like UNO.

Keywords: democracy, mathematic, modelization, quantification

Procedia PDF Downloads 331
2153 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 178
2152 Slow pace towards Teaching Mathematical Science in Nepal: A Historical Perspective

Authors: Dammar Bahadur Adhikari

Abstract:

Mathematics teaching begins with human civilization. The rular used to choose mathematician as prime adviser in many tribes and country. Mathematics was powerful tool for understanding economial situation and strength of rular. In ancient Nepal teaching of mathematics starts with informal education provided by religious leaders there after in modern education system seems to follow the world’s educational system. The aim of this paper is to present a brief historical background of the Nepalese mathematicians up to nineteenth century and highlight the transformation in mathematical science in the line with modern world. Secondary data and formal papers and informal publications were studied to explore the present situation of education. The study concluded that there is remarcable change in quality of education and there are sufficient human powers in the mathematical sciences in Nepal.

Keywords: human development, mathematics, Nepal, science, traditional

Procedia PDF Downloads 359
2151 Artificial Intelligence and Liability within Healthcare: A South African Analysis

Authors: M. Naidoo

Abstract:

AI in healthcare can have a massive positive effect in low-resource states like South Africa, where patients outnumber personnel greatly. However, the complexity and ‘black box’ aspects of these technologies pose challenges for the liability regimes of states. This is currently being discussed at the international level. This research finds that within the South African medical negligence context, the current common law fault-based inquiry proves to be wholly inadequate for patient redress. As a solution to this, this research paper culminates in legal reform recommendations designed to solve these issues.

Keywords: artificial intelligence, law, liability, policy

Procedia PDF Downloads 77
2150 Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator

Authors: Ramish, Farhan Khalique Awan

Abstract:

Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology.

Keywords: fault tolerant, Graham matrix, Jacobian, kinematics, Lagrange-Euler

Procedia PDF Downloads 195
2149 Optimality Conditions and Duality for Semi-Infinite Mathematical Programming Problems with Equilibrium Constraints, Using Convexificators

Authors: Shashi Kant Mishra

Abstract:

In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the ∂∗convexity assumptions. A Mond-Weir type dual problem is also formulated and studied for the SIMPEC under the ∂∗-convexity, ∂∗-pseudoconvexity and ∂∗quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification (GS-ACQ).

Keywords: mathematical programming problems with equilibrium constraints, optimality conditions, semi-infinite programming, convexificators

Procedia PDF Downloads 302
2148 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.

Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation

Procedia PDF Downloads 96
2147 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 298
2146 Arts and Cultural Heritage Digitalization in Nigeria: Problems and Prospects

Authors: Okechukwu Uzoma Nkwocha, Edward Uche Omeire

Abstract:

Information and communication technologies (ICT) undeniably, have expanded the sphere of arts and creativity. It proves to be an important tool for production, preservation, sharing and utilization of arts and cultural heritage. While art and heritage institutions around the globe are increasingly utilizing ICT for the promotion and sharing of their collections, the story seems different in most part of Africa. In this paper, we will examine the prospects and problems of utilizing ICT in promotion, preservation and sharing of arts and cultural heritage.

Keywords: arts, cultural heritage, digitalization, ICT

Procedia PDF Downloads 156
2145 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: motion planning, SCARA robot, trajectory tracking, analytical form

Procedia PDF Downloads 288