Search results for: speed control loop of permanent magnet synchronous motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14174

Search results for: speed control loop of permanent magnet synchronous motor

13964 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques.

Keywords: Close Loop Control (CLC), constant current, nerve locator, rheobase

Procedia PDF Downloads 229
13963 Reliability Enhancement by Parameter Design in Ferrite Magnet Process

Authors: Won Jung, Wan Emri

Abstract:

Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.

Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method

Procedia PDF Downloads 481
13962 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle

Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez

Abstract:

Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.

Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop

Procedia PDF Downloads 118
13961 Combined Fuzzy and Predictive Controller for Unity Power Factor Converter

Authors: Abdelhalim Kessal

Abstract:

This paper treats a design of combined control of a single phase power factor correction (PFC). The strategy of the proposed control is based on two parts, the first, for the outer loop (DC output regulated voltage), and the second govern the input current of the converter in order to achieve a sinusoidal form in phase with the grid voltage. Two kinds of regulators are used, Fuzzy controller for the outer loop and predictive controller for the inner loop. The controllers are verified and discussed through simulation under MATLAB/Simulink platform. Also an experimental confirmation is applied. Results present a high dynamic performance under various parameters changes.

Keywords: boost converter, harmonic distortion, Fuzzy, predictive, unity power factor

Procedia PDF Downloads 461
13960 Iron Yoke Dipole with High Quality Field for Collector Ring FAIR

Authors: Tatyana Rybitskaya, Alexandr Starostenko, Kseniya Ryabchenko

Abstract:

Collector ring (CR) of FAIR project is a large acceptance storage ring and field quality plays a major role in the magnet design. The CR will use normal conducting dipole magnets. There will be 24 H-type sector magnets with a maximum field value of 1.6 T. The integrated over the length of the magnet field quality as a function of radius is ∆B.l/B.l = ±1x10⁻⁴. Below 1.6 T the value ∆B.l/B.l can be higher with a linear approximation up to ±2.5x10⁻⁴ at the field level of 0.8 T. An iron-dominated magnet with required field quality is produced with standard technology as the quality is dominated by the yoke geometry.

Keywords: conventional magnet, iron yoke dipole, harmonic terms, particle accelerators

Procedia PDF Downloads 118
13959 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization

Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir

Abstract:

Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.

Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink

Procedia PDF Downloads 75
13958 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: aggregate angularity, asphalt concrete, permanent deformation, rutting prediction

Procedia PDF Downloads 369
13957 Robust Control of a Single-Phase Inverter Using Linear Matrix Inequality Approach

Authors: Chivon Choeung, Heng Tang, Panha Soth, Vichet Huy

Abstract:

This paper presents a robust control strategy for a single-phase DC-AC inverter with an output LC-filter. An all-pass filter is utilized to create an artificial β-signal so that the proposed controller can be simply used in dq-synchronous frame. The proposed robust controller utilizes a state feedback control with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the LC-filter.

Keywords: single-phase inverter, linear matrix inequality, robust control, all-pass filter

Procedia PDF Downloads 112
13956 Development of an Automatic Control System for ex vivo Heart Perfusion

Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala

Abstract:

Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.

Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller

Procedia PDF Downloads 143
13955 Study on the DC Linear Stepper Motor to Industrial Applications

Authors: Nolvi Francisco Baggio Filho, Roniele Belusso

Abstract:

Many industrial processes require a precise linear motion. Usually, this movement is achieved with the use of rotary motors combined with electrical control systems and mechanical systems such as gears, pulleys and bearings. Other types of devices are based on linear motors, where the linear motion is obtained directly. The Linear Stepper Motor (MLP) is an excellent solution for industrial applications that require precise positioning and high speed. This study presents an MLP formed by a linear structure and static ferromagnetic material, and a mover structure in which three coils are mounted. Mechanical suspension systems allow a linear movement between static and mover parts, maintaining a constant air gap. The operating principle is based on the tendency of alignment of magnetic flux through the path of least reluctance. The force proportional to the intensity of the electric current and the speed proportional to the frequency of the excitation coils. The study of this device is still based on the use of a numerical and experimental analysis to verify the relationship among electric current applied and planar force developed. In addition, the magnetic field in the air gap region is also monitored.

Keywords: linear stepper motor, planar traction force, reluctance magnetic, industry applications

Procedia PDF Downloads 474
13954 Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine

Authors: Shishir Lamichhane, Saurav Dulal, Bibek Gautam, Madan Thapa Magar, Indraman Tamrakar

Abstract:

Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability.

Keywords: damping constant, inertia–constant, ROCOF, transient stability, distributed sources

Procedia PDF Downloads 166
13953 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain

Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui

Abstract:

Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.

Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer

Procedia PDF Downloads 50
13952 Mathematical Modelling and Parametric Study of Water Based Loop Heat Pipe for Ground Application

Authors: Shail N. Shah, K. K. Baraya, A. Madhusudan Achari

Abstract:

Loop Heat Pipe is a passive two-phase heat transfer device which can be used without any external power source to transfer heat from source to sink. The main aim of this paper is to have modelling of water-based LHP at varying heat loads. Through figures, how the fluid flow occurs within the loop has been explained. Energy Balance has been done in each section. IC (Iterative Convergence) scheme to find out the SSOT (Steady State Operating Temperature) has been developed. It is developed using Dev C++. To best of the author’s knowledge, hardly any detail is available in the open literature about how temperature distribution along the loop is to be evaluated. Results for water-based loop heat pipe is obtained and compared with open literature and error is found within 4%. Parametric study has been done to see the effect of different parameters on pressure drop and SSOT at varying heat loads.

Keywords: loop heat pipe, modelling of loop heat pipe, parametric study of loop heat pipe, functioning of loop heat pipe

Procedia PDF Downloads 381
13951 PEA Design of the Direct Control for Training Motor Drives

Authors: Abdulatif Abdulsalam Mohamed Shaban

Abstract:

This paper states that the art of Procedure Entry Array (PEA) plan with a focus on control system applications. This paper begins with an impression of PEA technology development, followed by an arrangement of design technologies, and the use of programmable description languages and system-level design tools. They allow a practical approach based on a unique model for complete engineering electronics systems. There are three main design rules are implemented in the system. These are algorithm based fine-tuning, modularity, and the control act and the architectural constraints. An overview of contributions and limits of PEAs is also given, followed by a short survey of PEA-based gifted controllers for recent engineering systems. Finally, two complete and timely case studies are presented to illustrate the benefits of a PEA implementation when using the proposed system modelling and devise attitude. These consist of the direct control for training motor drives and the control of a diesel-driven stand-alone generator with the help of logical design.

Keywords: control (DC), engineering electronics systems, training motor drives, procedure entry array

Procedia PDF Downloads 489
13950 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 126
13949 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control

Procedia PDF Downloads 105
13948 Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator

Authors: Weiwei Shan, Wenjing Ding, Juan Ning, Chao He, Zijuan Wang

Abstract:

Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN2) gravity circulation loop including its equipment and layout is designed and has served as LN2 feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K.

Keywords: cryopumps, gravity circulation loop, liquid nitrogen, two-phase

Procedia PDF Downloads 364
13947 Improvement of an Arm and Shoulder Exoskeleton Using Gyro Sensor

Authors: D. Maneetham

Abstract:

The developed exoskeleton device has to control joints between shoulder and arm. Exoskeleton device can help patients with hemiplegia upper so that the patient can help themselves in their daily life. Exoskeleton device includes a robot arm wear that looks like the movement is similar to the normal arm. Exoskeleton arm is powered by the motor through the cable with a control system that developed to control the movement of the joint of a robot arm. The arm will include the shoulder, the elbow, and the wrist. The control system is used Arduino Mega 2560 controller and the operation of the DC motor through the relay module. The control system can be divided into two modes such as the manual control with the joystick mode and automatically control with the movement of the head by Gyro sensor. The controller is also designed to move between the shoulder and the arm movement from their original location. Results have shown that the controller gave the best performance and all movements can be controlled.

Keywords: exoskeleton arm, hemiplegia upper, shoulder and arm, stroke

Procedia PDF Downloads 330
13946 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 345
13945 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 598
13944 Impact of Motor Behaviour Aspects of Autism on Cognitive Ability in Children with Autism Spectrum Disorder

Authors: Rana Zeina

Abstract:

Cognitive and behavioral symptoms may, in fact, overlap and be related to the level of the general cognitive function. We measured the behavioral aspects of autism and its correlation to the cognitive ability in 30 children with ASD. We used a neuropsychological battery CANTAB eclipse to evaluate the ASD children's cognitive ability. Individuals with ASDs and challenging behaviors showed significant correlation between some cognitive abilities and motor behavior aspects. Based on these findings we can conclude that the motor behavioral problems in autism affect specific cognitive abilities in ASDs such as comprehension, learning, reversal, acquisition, attention set shifting, and speed of reaction to one stimulus. Future research should also focus on the relationship between motor stereotypes and other subtypes of repetitive behaviors, such as verbal stereotypes, and ritual and routine adherence and use different types of CANTAB tests.

Keywords: cognitive ability, CANTAB test, behaviour motor aspects, autism spectrum disorders

Procedia PDF Downloads 466
13943 Advanced Mechatronic Design of Robot Manipulator Using Hardware-In-The-Loop Simulation

Authors: Reza Karami, Ali Akbar Ebrahimi

Abstract:

This paper discusses concurrent engineering of robot manipulators, based on the Holistic Concurrent Design (HCD) methodology and by using a hardware-in-the-loop simulation platform. The methodology allows for considering numerous design variables with different natures concurrently. It redefines the ultimate goal of design based on the notion of satisfaction, resulting in the simplification of the multi-objective constrained optimization process. It also formalizes the effect of designer’s subjective attitude in the process. To enhance modeling efficiency for both computation and accuracy, a hardware-in-the-loop simulation platform is used, which involves physical joint modules and the control unit in addition to the software modules. This platform is implemented in the HCD design architecture to reliably evaluate the design attributes and performance super criterion during the design process. The resulting overall architecture is applied to redesigning kinematic, dynamic and control parameters of an industrial robot manipulator.

Keywords: concurrent engineering, hardware-in-the-loop simulation, robot manipulator, multidisciplinary systems, mechatronics

Procedia PDF Downloads 418
13942 3D Shape Knitting: Loop Alignment on a Surface with Positive Gaussian Curvature

Authors: C. T. Cheung, R. K. P. Ng, T. Y. Lo, Zhou Jinyun

Abstract:

This paper aims at manipulating loop alignment in knitting a three-dimensional (3D) shape by its geometry. Two loop alignment methods are introduced to handle a surface with positive Gaussian curvature. As weft knitting is a two-dimensional (2D) knitting mechanism that the knitting cam carrying the feeders moves in two directions only, left and right, the knitted fabric generated grows in width and length but not in depth. Therefore, a 3D shape is required to be flattened to a 2D plane with surface area preserved for knitting. On this flattened plane, dimensional measurements are taken for loop alignment. The way these measurements being taken derived two different loop alignment methods. In this paper, only plain knitted structure was considered. Each knitted loop was taken as a basic unit for loop alignment in order to achieve the required geometric dimensions, without the inclusion of other stitches which give textural dimensions to the fabric. Two loop alignment methods were experimented and compared. Only one of these two can successfully preserve the dimensions of the shape.

Keywords: 3D knitting, 3D shape, loop alignment, positive Gaussian curvature

Procedia PDF Downloads 319
13941 A Study on the Functional Safety Analysis of Stage Control System Based on International Electronical Committee 61508-2

Authors: Youn-Sung Kim, Hye-Mi Kim, Sang-Hoon Seo, Jaden Cha

Abstract:

This International standard IEC 61508 sets out a generic approach for all safety lifecycle activities for systems comprised of electrical/electronic/programmable electronic (E/E/PE) elements that are used to perform safety functions. The control unit in stage control system is safety related facilities to control state and speed for stage system running, and it performs safety-critical function by stage control system. The controller unit is part of safety loops corresponding to the IEC 61508 and classified as logic part in the safety loop. In this paper, we analyze using FMEDA (Failure Mode Effect and Diagnostic Analysis) to verification for fault tolerance methods and functional safety of control unit. Moreover, we determined SIL (Safety Integrity Level) for control unit according to the safety requirements defined in IEC 61508-2 based on an analyzed functional safety.

Keywords: safety function, failure mode effect, IEC 61508-2, diagnostic analysis, stage control system

Procedia PDF Downloads 245
13940 Auricular-Magnet Therapy for Treating Diabetes Mellitus, Food Craving, Insomnia, Nausea and Bell’s Palsy

Authors: Yu Chen

Abstract:

Auricular-magnet therapy is the development of auricular acupuncture. It is a powerful, convenient, and quick result-achieving therapeutic method. This therapy works by using magnetic discs to be placed on acupuncture points on the ears to treat diseases and improve health. In this study, the fundamental principles, indications, and contraindications of this therapy are discussed. Five examples, including reducing blood glucose levels, healing gangrene for diabetes patients, and treating Bell's palsy, are presented. Auricular-magnet therapy is a powerful development in acupuncture.

Keywords: auricular-magnet therapy, Bell’s palsy, diabetes mellitus, food craving, insomnia, nausea, obesity

Procedia PDF Downloads 92
13939 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 287
13938 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive

Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani

Abstract:

Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.

Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid

Procedia PDF Downloads 547
13937 Analytical Design of Fractional-Order PI Controller for Decoupling Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system

Procedia PDF Downloads 298
13936 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque

Procedia PDF Downloads 451
13935 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment

Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal

Abstract:

This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.

Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability

Procedia PDF Downloads 295