Search results for: mathematics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 503

Search results for: mathematics

113 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: actionable pattern discovery, education, emotion, data mining

Procedia PDF Downloads 63
112 High School Stem Curriculum and Example of Laboratory Work That Shows How Microcomputers Can Help in Understanding of Physical Concepts

Authors: Jelena Slugan, Ivica Ružić

Abstract:

We are witnessing the rapid development of technologies that change the world around us. However, curriculums and teaching processes are often slow to adapt to the change; it takes time, money and expertise to implement technology in the classroom. Therefore, the University of Split, Croatia, partnered with local school Marko Marulić High School and created the project "Modern competence in modern high schools" as part of which five different curriculums for STEM areas were developed. One of the curriculums involves combining information technology with physics. The main idea was to teach students how to use different circuits and microcomputers to explore nature and physical phenomena. As a result, using electrical circuits, students are able to recreate in the classroom the phenomena that they observe every day in their environment. So far, high school students had very little opportunity to perform experiments independently, and especially, those physics experiment did not involve ICT. Therefore, this project has a great importance, because the students will finally get a chance to develop themselves in accordance to modern technologies. This paper presents some new methods of teaching physics that will help students to develop experimental skills through the study of deterministic nature of physical laws. Students will learn how to formulate hypotheses, model physical problems using the electronic circuits and evaluate their results. While doing that, they will also acquire useful problem solving skills.

Keywords: ICT in physics, curriculum, laboratory activities, STEM (science, technology, engineering, mathematics)

Procedia PDF Downloads 174
111 Using Systems Theory and Collective Impact Approaches to Increase the Retention and Success of University Student Stem Majors

Authors: Araceli Martínez Ortiz

Abstract:

An educational research effort is analyzed using systems theory to document the power of collective impact when addressing multiple factors contributing towards the retention of students majoring in science, technology, engineering and mathematics (STEM) academic programs. This research promotes understanding on how networked communities may work effectively toward a shared vision and mutually aligned activities that result in sustained, large scale change. The actions of a team of researchers in their third year of collaboration are presented to describe a model that positively aligns work efforts resulting in greater total gains. The goals of the multiple programs managed by the funded program team are to: 1) expand the number of students who choose to study a STEM field of study; 2) promote student collaborative learning; 3) support faculty understanding of the funds of knowledge of diverse students and 4) establish innovative and robust STEM education research that will lead to the development of nationally replicable, scalable models for broadening participation in STEM. The impacts of this research effort are measured through quantitative statistical analysis of the changes in second-year STEM undergraduate student retention rates and representation rates of women, Hispanics and African American STEM majors.

Keywords: collaborative impact, diversity, student retention, systems theory, STEM education

Procedia PDF Downloads 234
110 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.

Keywords: instability, torsion, flexural, buckling, modified newmark method stability

Procedia PDF Downloads 323
109 Scholastic Ability and Achievement as Predictors of College Performance among Selected Second Year College Students at University of Perpetual Help System DALTA, Calamba

Authors: Shielilo R. Amihan, Ederliza De Jesus

Abstract:

The study determined the predictors of college performance of 2nd Yr students of UPHSD-Calamba. This quantitative study conducted a survey using the Scholastic Abilities Test for Adults (SATA), and the retrieval of entrance examinations results and current General Weighted Average (GWA) of the 242 randomly selected respondents. The mean, Pearson r and multiple regression analyses through SPSS revealed that students are capable of verbal, non-verbal and quantitative reasoning, reading vocabulary, comprehension, math calculation, and writing mechanics but have difficulty in math application and writing composition. The study found out the Scholastic Ability and Achievement, except in mathematics, are significantly related to college performance. It concludes that students with high ability and achievement may perform better in college. However, only English subset results in the entrance exam predicts the academic success of students in college while SATA and Math entrance exam results do not. The study recommends providing pre-college Math and Writing courses as requisites in college. It also suggests implementing formative curriculum-based enhancement programs on specific priority areas, profiling programs towards informed individual academic decision-making, revising the Entrance Examinations, monitoring the development of the students, and exploring other predictors of college academic performance such as non-cognitive factors.

Keywords: scholastic ability, scholastic achievement, entrance exam, college performance

Procedia PDF Downloads 234
108 Social Responsibility in Reducing Gap between High School and 1st Year University Maths: SMU Case, South Africa

Authors: Solly M. Seeletse, Joel L. Thabane

Abstract:

Students enrolling at the Sefako Makgatho Health Sciences University (SMU) come mostly from the previously disadvantaged communities of South Africa. Their backgrounds are deprived in resources and modern technologies of education. Most of those admitted in the basic sciences were rejected in medicine and health related study programmes in SMU. Mathematics (maths) is the main subject for admission into SMU study programmes. However, maths results are usually low. In an attempt to help to prepare the students in the neighbourhood schools of SMU, some Maths educators partnered with local schools to communicate the needs and investigate the causes of poor maths results. They embarked on an action research to determine the level of educators’ maths education. The general aim of the research was to investigate the causes of deficiencies in maths teaching and results in the local secondary schools, focusing on teachers and learners. Asking the teachers about their education and learners about maths concepts of most difficulty, these were identified. The researchers assisted in teaching the difficult concepts. The study highlighted the most difficult concepts and the teachers’ lack of training in some content. Intervention of the researchers showed to be effective only for the very poor performing schools. Those with descent pass rates of over 50% did not benefit from it. This was the sign of lack of optimality in the methods used. The research recommendations suggested that intervention methods should be improved to be effective in all schools, and extension of the endeavours to more schools.

Keywords: action research, intervention, social responsibility, support

Procedia PDF Downloads 241
107 Using Thinking Blocks to Encourage the Use of Higher Order Thinking Skills among Students When Solving Problems on Fractions

Authors: Abdul Halim Abdullah, Nur Liyana Zainal Abidin, Mahani Mokhtar

Abstract:

Problem-solving is an activity which can encourage students to use Higher Order Thinking Skills (HOTS). Learning fractions can be challenging for students since empirical evidence shows that students experience difficulties in solving the fraction problems. However, visual methods can help students to overcome the difficulties since the methods help students to make meaningful visual representations and link abstract concepts in Mathematics. Therefore, the purpose of this study was to investigate whether there were any changes in students’ HOTS at the four highest levels when learning the fractions by using Thinking Blocks. 54 students participated in a quasi-experiment using pre-tests and post-tests. Students were divided into two groups. The experimental group (n=32) received a treatment to improve the students’ HOTS and the other group acted as the control group (n=22) which used a traditional method. Data were analysed by using Mann-Whitney test. The results indicated that during post-test, students who used Thinking Blocks showed significant improvement in their HOTS level (p=0.000). In addition, the results of post-test also showed that the students’ performance improved significantly at the four highest levels of HOTS; namely, application (p=0.001), analyse (p=0.000), evaluate (p=0.000), and create (p=0.000). Therefore, it can be concluded that Thinking Blocks can effectively encourage students to use the four highest levels of HOTS which consequently enable them to solve fractions problems successfully.

Keywords: Thinking Blocks, Higher Order Thinking Skills (HOTS), fractions, problem solving

Procedia PDF Downloads 236
106 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 203
105 Pedagogy to Involve Research Process in an Undergraduate Physical Fitness Course: A Case Study

Authors: Indhumathi Gopal

Abstract:

Undergraduate research is well documented in Science, Technology, Engineering, and Mathematics (STEM), neurosciences, and microbiology disciplines, though it is hardly part of a physical fitness & wellness discipline. However, students need experiential learning opportunities, like internships and research assistantships, to get ahead with graduate schools and be gainfully employed. The first step towards this goal is to have students do a simple research project in a semester-long course. The value of research experiences and how to integrate research activity in a physical fitness & wellness course are discussed. The investigator looks into a mini research project, “Awareness of Obesity among College Students” and explains how to guide students through the research process, including journal search, data collection, and basic statistics. Besides, students will be introduced to the statistical package program SPSS 22.0 to assist with data evaluation. The lab component of the combined lecture-physical activity course could include the measurement of student’s weight with respect to their height to obtain body mass index (BMI). Students could categorize themselves in accordance with the World Health Organization’s guidelines. Results obtained after completing the data analysis help students be aware of their own potential health risks associated with overweight and obesity. Overweight and obesity are risk factors for hypertension, hypercholesterolemia, heart disease, stroke, diabetes, and certain types of cancer. It is hoped that this experience will get students interested in scientific studies, gain confidence, think critically, and develop problem-solving and good communication skills.

Keywords: physical fitness, undergraduate research experience, obesity, BMI

Procedia PDF Downloads 41
104 Isolated Iterating Fractal Independently Corresponds with Light and Foundational Quantum Problems

Authors: Blair D. Macdonald

Abstract:

After nearly one hundred years of its origin, foundational quantum mechanics remains one of the greatest unexplained mysteries in physicists today. Within this time, chaos theory and its geometry, the fractal, has developed. In this paper, the propagation behaviour with an iteration of a simple fractal, the Koch Snowflake, was described and analysed. From an arbitrary observation point within the fractal set, the fractal propagates forward by oscillation—the focus of this study and retrospectively behind by exponential growth from a point beginning. It propagates a potentially infinite exponential oscillating sinusoidal wave of discrete triangle bits sharing many characteristics of light and quantum entities. The model's wave speed is potentially constant, offering insights into the perception and a direction of time where, to an observer, when travelling at the frontier of propagation, time may slow to a stop. In isolation, the fractal is a superposition of component bits where position and scale present a problem of location. In reality, this problem is experienced within fractal landscapes or fields where 'position' is only 'known' by the addition of information or markers. The quantum' measurement problem', 'uncertainty principle,' 'entanglement,' and the classical-quantum interface are addressed; these are a problem of scale invariance associated with isolated fractality. Dual forward and retrospective perspectives of the fractal model offer the opportunity for unification between quantum mechanics and cosmological mathematics, observations, and conjectures. Quantum and cosmological problems may be different aspects of the one fractal geometry.

Keywords: measurement problem, observer, entanglement, unification

Procedia PDF Downloads 63
103 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions

Authors: Ramin Rostamkhani, Thurasamy Ramayah

Abstract:

One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.

Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components

Procedia PDF Downloads 63
102 Students' Errors in Translating Algebra Word Problems to Mathematical Structure

Authors: Ledeza Jordan Babiano

Abstract:

Translating statements into mathematical notations is one of the processes in word problem-solving. However, based on the literature, students still have difficulties with this skill. The purpose of this study was to investigate the translation errors of the students when they translate algebraic word problems into mathematical structures and locate the errors via the lens of the Translation-Verification Model. Moreover, this qualitative research study employed content analysis. During the data-gathering process, the students were asked to answer a six-item algebra word problem questionnaire, and their answers were analyzed by experts through blind coding using the Translation-Verification Model to determine their translation errors. After this, a focus group discussion was conducted, and the data gathered was analyzed through thematic analysis to determine the causes of the students’ translation errors. It was found out that students’ prevalent error in translation was the interpretation error, which was situated in the Attribute construct. The emerging themes during the FGD were: (1) The procedure of translation is strategically incorrect; (2) Lack of comprehension; (3) Algebra concepts related to difficulty; (4) Lack of spatial skills; (5) Unprepared for independent learning; and (6) The content of the problem is developmentally inappropriate. These themes boiled down to the major concept of independent learning preparedness in solving mathematical problems. This concept has subcomponents, which include contextual and conceptual factors in translation. Consequently, the results provided implications for instructors and professors in Mathematics to innovate their teaching pedagogies and strategies to address translation gaps among students.

Keywords: mathematical structure, algebra word problems, translation, errors

Procedia PDF Downloads 22
101 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples

Authors: Sedat Simsek, Tugay Arat

Abstract:

Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.

Keywords: education, communication technologies, role of technology, teaching

Procedia PDF Downloads 278
100 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19

Authors: Youssef A. Yakoub, Ramy M. Shaaban

Abstract:

Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.

Keywords: eLearning, STEM education, COVID-19 crisis, online practical training

Procedia PDF Downloads 106
99 Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Authors: Sanaz Ahmadzadeh Siyahrood, Arghavan Ebrahimi, Mohammadjavad Mahdavinejad

Abstract:

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Keywords: angle, equal triangle, square, structural hierarchy

Procedia PDF Downloads 165
98 Collaborative Learning Strategies in Engineering Tuition Focused on Students’ Engagement

Authors: Maria Gonzalez Alriols, Itziar Egues, Maria A. Andres, Mirari Antxustegi

Abstract:

Peer to peer learning is an educational tool very useful to enhance teamwork and reinforce cooperation between mates. It is particularly successful to work with students of different level of previous knowledge, as it often happens among pupils of subjects in the first course of science and engineering studies. Depending on the performed pre-university academic itinerary, the acquired knowledge in disciplines as mathematics, physics, or chemistry may be quite different. This fact is an added difficulty to the tuition of first-course basic science subjects of engineering degrees, with inexperienced students that do not know each other. In this context, peer to peer learning applied in small groups facilitates the communication between mates and makes it easier for the students with low level to be helped by the ones with better prior knowledge. In this work, several collaborative learning strategies were designed to be applied in the tuition of the subject 'chemistry', which is imparted in the first course of an engineering degree. Students were organized in groups combining mates with different level of prior knowledge. The teaching role was offered to the more experienced students who were responsible for designing learning pills to help the other mates in their group. This workload was rewarded with an extra mark, and more extra points were offered to all the group mates if every student in the group reached a determined level at the end of the semester. It was very important to start these activities from the beginning of the semester in order to avoid absenteeism. The obtained results were positive as a higher percentage of mates signed up and passed the final exam, the obtained final marks were higher, and a much better atmosphere was observed in the class.

Keywords: peer to peer tuition, collaborative learning, engineering instruction, chemistry

Procedia PDF Downloads 121
97 Need for E-Learning: An Effective Method in Educating the Persons with Hearing Impairment Using Sign Language

Authors: S. Vijayakumar, S. B. Rathna Kumar, Navnath D Jagadale

Abstract:

Learning and teaching are the challenges ahead in the education of the students with hearing impairment using sign language (SHISL). Either the students or teachers face difficulties in the process of learning/teaching. Communication is one of the main barriers while teaching SHISL. Further, the courses of study or the subjects are limited to SHISL at least in countries like India. Students with hearing impairment mainly opt for sign language as a communication mode. Subjects like physics, chemistry, advanced mathematics etc. are not available in the curriculum for the SHISL since their content and ideas are complex. In India, exemption for language papers is being given for the students with hearing impairment. It may give opportunity to them to secure secondary/ higher secondary qualifications. It is a known fact that students with hearing impairment are facing difficulty in their future carrier. They secure neither a higher study nor a good employment opportunity. Vocational training in various trades will land them in few jobs with few bucks in pocket. However, not all of them are blessed with higher positions in government or private sectors in competitive fields or where the technical knowledge is required. E learning with sign language instructions can be used for teaching languages and science subjects. Computer Based Instruction (CBI), Computer Based Training (CBT), and Computer Assisted Instruction (CAI) are now part-and-parcel of Modern Education. It will also include signed video clip corresponding to the topic. Learning language subjects will improve the understanding of concepts in different subjects. Learning other science subjects like their hearing counterparts will enable the SHISL to go higher in studies and increase their height to pluck a fruit of the tree of employment.

Keywords: students with hearing impairment using sign language, hearing impairment, language subjects, science subjects, e-learning

Procedia PDF Downloads 376
96 Geometry, the language of Manifestation of Tabriz School’s Mystical Thoughts in Architecture (Case Study: Dome of Soltanieh)

Authors: Lida Balilan, Dariush Sattarzadeh, Rana Koorepaz

Abstract:

In the Ilkhanid era, the mystical school of Tabriz manifested itself as an art school in various aspects, including miniatures, architecture, urban planning and design, simultaneously with the expansion of the many sciences of its time. In this era, mysticism, both in form and in poetry and prose, as well as in works of art reached its peak. Mysticism, as an inner belief and thought, brought the audience to the artistic and aesthetical view using allegorical and symbolic expression of the religion and had a direct impact on the formation of the intellectual and cultural layers of the society. At the same time, Mystic school of Tabriz could create a symbolic and allegorical language to create magnificent works of architecture with the expansion of science in various fields and using various sciences such as mathematics, geometry, science of numbers and by Abjad letters. In this era, geometry is the middle link between mysticism and architecture and it is divided into two categories, including intellectual and sensory geometry and based on its function. Soltaniyeh dome is one of the prominent buildings of the Tabriz school with the shrine land use. In this article, information is collected using a historical-interpretive method and the results are analyzed using an analytical-comparative method. The results of the study suggest that the designers and builders of the Soltaniyeh dome have used shapes, colors, numbers, letters and words in the form of motifs, geometric patterns as well as lines and writings in levels and layers ranging from plans to decorations and arrays for architectural symbolization and encryption to express and transmit mystical ideas.

Keywords: geometry, Tabriz school, mystical thoughts, dome of Soltaniyeh

Procedia PDF Downloads 53
95 'I Mean' in Teacher Questioning Sequences in Post-Task Discussions: A Conversation Analytic Study

Authors: Derya Duran, Christine Jacknick

Abstract:

Despite a growing body of research on classroom, especially language classroom interactions, much more is yet to be discovered on how interaction is organized in higher education settings. This study investigates how the discourse marker 'I mean' in teacher questioning turns functions as a resource to promote student participation as well as to enhance collective understanding in whole-class discussions. This paper takes a conversation analytic perspective, drawing on 30-hour video recordings of classroom interaction in an English as a medium of instruction university in Turkey. Two content classrooms (i.e., Guidance) were observed during an academic term. The course was offered to 4th year students (n=78) in the Faculty of Education; students were majoring in different subjects (i.e., Early Childhood Education, Foreign Language Education, Mathematics Education). Results of the study demonstrate the multi-functionality of discourse marker 'I mean' in teacher questioning turns. In the context of English as a medium of instruction classrooms where possible sources of confusion may occur, we found that 'I mean' is primarily used to indicate upcoming adjustments. More specifically, it is employed for a variety of interactional purposes such as elaboration, clarification, specification, reformulation, and reference to the instructional activity. The study sheds light on the multiplicity of functions of the discourse marker in academic interactions and it uncovers how certain linguistic resources serve functions to the organization of repair such as the maintenance of understanding in classroom interaction. In doing so, it also shows the ways in which participation is routinely enacted in shared interactional events through linguistic resources.

Keywords: conversation analysis, discourse marker, English as a medium of instruction, repair

Procedia PDF Downloads 127
94 Investigating Effect of Geometrical Proportions in Islamic Architecture and Music

Authors: Amir Hossein Allahdadi

Abstract:

The mystical and intuitive look of Islamic artists inspired by the Koranic and mystical principles and also based on the geometry and mathematics has left unique works whose range extends across the borders of Islam. The relationship between Islamic art and music in the traditional art is of one of the concepts that can be traced back to the other arts by detection of its components. One of the links is the art of painting whose subtleties that can be applicable to both architecture and music. So, architecture and music links can be traced in other arts with a traditional foundation in order to evaluate the equivalents of traditional arts. What is the relationship between physical space of architecture and nonphysical space of music? What is musical architecture? What is the music that tends to architecture? These questions are very small samples of the questions that arise in this category, and these questions and concerns remain as long as the music is played and the architecture is made. Efforts have been made in this area, references compiled and plans drawn. As an example, we can refer to views of ‘Mansour Falamaki’ in the book of architecture and music, as well as the book transition from mud to heart by ‘Hesamodin Seraj’. The method is such that a certain melody is given to an architect and it is tried to design a specified architecture using a certain theme. This study is not to follow the architecture of a particular type of music and the formation of a volume based on a sound. In this opportunity, it is tried to briefly review the relationship between music and architecture in the Iranian original and traditional arts, using the basic definitions of arts. The musician plays, the architect designs, the actor forms his desired space and painter displays his multi-dimensional world in the form of two-dimensions. The expression language is different, but all of them can be gathered in a form, a form which has no clear boundaries. In fact, in any original art, the artist applies his art as a tool to express his insights which are nothing but achieving the world beyond this place and time.

Keywords: architecture, music, geometric proportions, mathematical proportions

Procedia PDF Downloads 221
93 Evaluating the Perception of Roma in Europe through Social Network Analysis

Authors: Giulia I. Pintea

Abstract:

The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.

Keywords: applied mathematics, oppression, Roma people, social network analysis

Procedia PDF Downloads 248
92 Investigating Students' Understanding about Mathematical Concept through Concept Map

Authors: Rizky Oktaviana

Abstract:

The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.

Keywords: concept map, concept mapping, mathematical concepts, understanding

Procedia PDF Downloads 245
91 Rationalizing the Utilization of Interactive Engagement Strategies in Teaching Specialized Science Courses of STEM and GA Strands in the Academic Track of Philippine Senior High School Curriculum

Authors: Raul G. Angeles

Abstract:

The Philippine government instituted major reforms in its educational system. The Department of Education pushes the K to 12 program that makes kindergarten mandatory and adds two years of senior high school to the country's basic education. In essence, the students’ stay in basic education particularly those who are supposedly going to college is extended. The majority of the students expressed that they will be taking the Academic Track of the Senior High School curriculum specifically the Science, Technology, Engineering and Mathematics (STEM) and General Academic (GA) strands. Almost certainly, instruction should match the students' styles and thus through this descriptive study a city survey was conducted to explore the teaching strategies preferences of junior high school students and teachers who will be promoted to senior high school during the Academic Year 2016-2017. This study was conducted in selected public and private secondary schools in Metro Manila. Questionnaires were distributed to students and teachers; and series of follow-up interviews were also carried out to generate additional information. Preferences of students are centered on employing innovations such as technology, cooperative and problem-based learning. While the students will still be covered by basic education their interests in science are sparking to a point where the usual teaching styles may no longer work to them and for that cause, altering the teaching methods is recommended to create a teacher-student style matching. Other effective strategies must likewise be implemented.

Keywords: curriculum development, effective teaching strategies, problem-based learning, senior high school, science education, technology

Procedia PDF Downloads 231
90 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 100
89 An Investigation of Item Bias in Free Boarding and Scholarship Examination in Turkey

Authors: Yeşim Özer Özkan, Fatma Büşra Fincan

Abstract:

Biased sample is a regression of an observation, design process and all of the specifications lead to tendency of a side or the situation of leaving from the objectivity. It is expected that, test items are answered by the students who come from different social groups and the same ability not to be different from each other. The importance of the expectation increases especially during student selection and placement examinations. For example, all of the test items should not be beneficial for just a male or female group. The aim of the research is an investigation of item bias whether or not the exam included in 2014 free boarding and scholarship examination in terms of gender variable. Data which belong to 5th, 6th, and 7th grade the secondary education students were obtained by the General Directorate of Measurement, Evaluation and Examination Services in Turkey. 20% students were selected randomly within 192090 students. Based on 38418 students’ exam paper were examined for determination item bias. Winsteps 3.8.1 package program was used to determine bias in analysis of data, according to Rasch Model in respect to gender variable. Mathematics items tests were examined in terms of gender bias. Firstly, confirmatory factor analysis was applied twenty-five math questions. After that, NFI, TLI, CFI, IFI, RFI, GFI, RMSEA, and SRMR were examined in order to be validity and values of goodness of fit. Modification index values of confirmatory factor analysis were examined and then some of the items were omitted because these items gave an error in terms of model conformity and conceptual. The analysis shows that in 2014 free boarding and scholarship examination exam does not include bias. This is an indication of the gender of the examination to be made in favor of or against different groups of students.

Keywords: gender, item bias, placement test, Rasch model

Procedia PDF Downloads 206
88 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality

Authors: Danielle Schneider, Ying Xie

Abstract:

Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.

Keywords: virtual reality, spatial reasoning, CAD, middle school STEM

Procedia PDF Downloads 52
87 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat

Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood

Abstract:

Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.

Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion

Procedia PDF Downloads 459
86 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers

Authors: R. M. Kashim

Abstract:

The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.

Keywords: conceptual, procedural knowledge, rational number, pupils

Procedia PDF Downloads 426
85 Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation

Authors: Sameer Jung Karki, Gokhan Saygili

Abstract:

The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations.

Keywords: bearing capacity, factor of safety, isolated footing, montecarlo simulation

Procedia PDF Downloads 155
84 Analysis of the Learning Effectiveness of the Steam-6e Course: A Case Study on the Development of Virtual Idol Product Design as an Example

Authors: Mei-Chun. Chang

Abstract:

STEAM (Science, Technology, Engineering, Art, and Mathematics) represents a cross-disciplinary and learner-centered teaching model that cultivates students to link theory with the presentation of real situations, thereby improving their various abilities. This study explores students' learning performance after using the 6E model in STEAM teaching for a professional course in the digital media design department of technical colleges, as well as the difficulties and countermeasures faced by STEAM curriculum design and its implementation. In this study, through industry experts’ work experience, activity exchanges, course teaching, and experience, learners can think about the design and development value of virtual idol products that meet the needs of users and to employ AR/VR technology to innovate their product applications. Applying action research, the investigation has 35 junior students from the department of digital media design of the school where the researcher teaches as the research subjects. The teaching research was conducted over two stages spanning ten weeks and 30 sessions. This research collected the data and conducted quantitative and qualitative data sorting analyses through ‘design draft sheet’, ‘student interview record’, ‘STEAM Product Semantic Scale’, and ‘Creative Product Semantic Scale (CPSS)’. Research conclusions are presented, and relevant suggestions are proposed as a reference for teachers or follow-up researchers. The contribution of this study is to teach college students to develop original virtual idols and product designs, improve learning effectiveness through STEAM teaching activities, and effectively cultivate innovative and practical cross-disciplinary design talents.

Keywords: STEAM, 6E model, virtual idol, learning effectiveness, practical courses

Procedia PDF Downloads 97