Search results for: loading and unloading force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3607

Search results for: loading and unloading force

7 Sustainable Antimicrobial Biopolymeric Food & Biomedical Film Engineering Using Bioactive AMP-Ag+ Formulations

Authors: Eduardo Lanzagorta Garcia, Chaitra Venkatesh, Romina Pezzoli, Laura Gabriela Rodriguez Barroso, Declan Devine, Margaret E. Brennan Fournet

Abstract:

New antimicrobial interventions are urgently required to combat rising global health and medical infection challenges. Here, an innovative antimicrobial technology, providing price competitive alternatives to antibiotics and readily integratable with currently technological systems is presented. Two cutting edge antimicrobial materials, antimicrobial peptides (AMPs) and uncompromised sustained Ag+ action from triangular silver nanoplates (TSNPs) reservoirs, are merged for versatile effective antimicrobial action where current approaches fail. Antimicrobial peptides (AMPs) exist widely in nature and have recently been demonstrated for broad spectrum of activity against bacteria, viruses, and fungi. TSNP’s are highly discrete, homogenous and readily functionisable Ag+ nanoreseviors that have a proven amenability for operation within in a wide range of bio-based settings. In a design for advanced antimicrobial sustainable plastics, antimicrobial TSNPs are formulated for processing within biodegradable biopolymers. Histone H5 AMP was selected for its reported strong antimicrobial action and functionalized with the TSNP (AMP-TSNP) in a similar fashion to previously reported TSNP biofunctionalisation methods. A synergy between the propensity of biopolymers for degradation and Ag+ release combined with AMP activity provides a novel mechanism for the sustained antimicrobial action of biopolymeric thin films. Nanoplates are transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. Extrusion is used in combination with calendering rolls to create thin polymerc film where the nanoplates are embedded onto the surface. The resultant antibacterial functional films are suitable to be adapted for food packing and biomedical applications. TSNP synthesis were synthesized by adapting a previously reported seed mediated approach. TSNP synthesis was scaled up for litre scale batch production and subsequently concentrated to 43 ppm using thermally controlled H2O removal. Nanoplates were transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. This was acomplised by functionalizing the TSNP with thiol terminated polyethylene glycol and using centrifugal force to transfer them to chloroform. Polycaprolactone (PCL) and Polylactic acid (PLA) were individually processed through extrusion, TSNP and AMP-TSNP solutions were sprayed onto the polymer immediately after exiting the dye. Calendering rolls were used to disperse and incorporate TSNP and TSNP-AMP onto the surface of the extruded films. Observation of the characteristic blue colour confirms the integrity of the TSNP within the films. Antimicrobial tests were performed by incubating Gram + and Gram – strains with treated and non-treated films, to evaluate if bacterial growth was reduced due to the presence of the TSNP. The resulting films successfully incorporated TSNP and AMP-TSNP. Reduced bacterial growth was observed for both Gram + and Gram – strains for both TSNP and AMP-TSNP compared with untreated films indicating antimicrobial action. The largest growth reduction was observed for AMP-TSNP treated films demonstrating the additional antimicrobial activity due to the presence of the AMPs. The potential of this technology to impede bacterial activity in food industry and medical surfaces will forge new confidence in the battle against antibiotic resistant bacteria, serving to greatly inhibit infections and facilitate patient recovery.

Keywords: antimicrobial, biodegradable, peptide, polymer, nanoparticle

Procedia PDF Downloads 88
6 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning

Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz

Abstract:

Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.

Keywords: crystallinity, electrospinning, PVDF, voltage polarity

Procedia PDF Downloads 106
5 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 250
4 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 48
3 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems

Procedia PDF Downloads 224
2 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 56
1 Maternity Care Model during Natural Disaster or Humanitarian Emegerncy Setting in Rural Pakistan

Authors: Humaira Maheen, Elizabeth Hoban, Catherine Bennette

Abstract:

Background: Globally, role of Community Health Workers (CHW) as front line disaster health work force is underutilized. Developing countries which are at risk of natural disasters or humanitarian emergencies should lay down effective strategies especially to ensure adequate access to maternity care during crisis situation by using CHW as they are local, trained, and most of them possess a good relationship with the community. The Minimum Initial Service Package (MISP) is a set of universal guidelines that addresses women’s reproductive health needs during the first phase of an emergency. According to the MISP, pregnant women should have access to a skilled birth attendant and adequate transportation arrangements so they can access a maternity care facility. Pakistan is one of the few countries which has been severely affected by a number of natural disaster as well as humanitarian emergencies in last decade. Pakistan has a young and structured National Disaster Management System in place, where District Authorities play a vital role in disaster management. The District Health Department develops the contingency health plan for an emergency situation and implements it under the existing district health human resources (health workers and medical staff at the health facility) and infrastructure (health care facilities). Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. The district health department didn’t make transportation arrangement for labouring women from relief camp to the nearest health care facility. As a result 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth. Of the 332 women who were pregnant at the time of the floods, 26 had adverse birth outcomes; 10 had miscarriages, 14 had stillbirths and there were four neonatal deaths. Conclusion: The district health department was not able to provide access to adequate maternity care during according to the international standard during the floods in 2011. We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps. Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. Nearly 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth, and the health camp was mostly accessed by men and always overcrowded. There was no obstetric trained medical staff in the health camps or transportation provided to take women with complications to the nearest health facility. The rate of adverse outcome following disaster was 22.2% (95% CI: 8.62% – 42.2%) amongst 27 women who did not evacuate as compare to 7.91% (95% CI: 5.03% – 11.8%) among 278 women who lived in relief camp study participants. There were 27 women who evacuated on pre-flood warning and had 0% rate of adverse outcome. Conclusion: We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps.

Keywords: natural disaster, maternity care model, rural, Pakistan, community health workers

Procedia PDF Downloads 231