Search results for: laplace approximation
587 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 161586 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling
Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos
Abstract:
Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood
Procedia PDF Downloads 70585 Approximation Property Pass to Free Product
Authors: Kankeyanathan Kannan
Abstract:
On approximation properties of group C* algebras is everywhere; it is powerful, important, backbone of countless breakthroughs. For a discrete group G, let A(G) denote its Fourier algebra, and let M₀A(G) denote the space of completely bounded Fourier multipliers on G. An approximate identity on G is a sequence (Φn) of finitely supported functions such that (Φn) uniformly converge to constant function 1 In this paper we prove that approximation property pass to free product.Keywords: approximation property, weakly amenable, strong invariant approximation property, invariant approximation property
Procedia PDF Downloads 675584 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution
Authors: Najrullah Khan, Athar Ali Khan
Abstract:
The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation
Procedia PDF Downloads 535583 Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus
Abstract:
Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other.Keywords: sani isa, Ali musaburger’s fluid, Laplace transform, fractional derivatives, annulus
Procedia PDF Downloads 24582 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)
Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton
Abstract:
Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference
Procedia PDF Downloads 107581 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm
Procedia PDF Downloads 333580 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions
Authors: Khaled Moaddy
Abstract:
In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions
Procedia PDF Downloads 131579 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models
Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton
Abstract:
Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets
Procedia PDF Downloads 425578 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity
Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif
Abstract:
In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.Keywords: thermoelasticity, thermal conductivity, Laplace transforms, Fourier transforms
Procedia PDF Downloads 226577 Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman
Authors: Hamdy M. Youssef
Abstract:
In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam.Keywords: nanobeam, vibration, constant magnetic field, ramp-type thermal loading, non-Fourier heat conduction law
Procedia PDF Downloads 137576 Annular Hyperbolic Profile Fins with Variable Thermal Conductivity Using Laplace Adomian Transform and Double Decomposition Methods
Authors: Yinwei Lin, Cha'o-Kuang Chen
Abstract:
In this article, the Laplace Adomian transform method (LADM) and double decomposition method (DDM) are used to solve the annular hyperbolic profile fins with variable thermal conductivity. As the thermal conductivity parameter ε is relatively large, the numerical solution using DDM become incorrect. Moreover, when the terms of DDM are more than seven, the numerical solution using DDM is very complicated. However, the present method can be easily calculated as terms are over seven and has more precisely numerical solutions. As the thermal conductivity parameter ε is relatively large, LADM also has better accuracy than DDM.Keywords: fins, thermal conductivity, Laplace transform, Adomian, nonlinear
Procedia PDF Downloads 333575 Modified Approximation Methods for Finding an Optimal Solution for the Transportation Problem
Authors: N. Guruprasad
Abstract:
This paper presents a modification of approximation method for transportation problems. The initial basic feasible solution can be computed using either Russel's or Vogel's approximation methods. Russell’s approximation method provides another excellent criterion that is still quick to implement on a computer (not manually) In most cases Russel's method yields a better initial solution, though it takes longer than Vogel's method (finding the next entering variable in Russel's method is in O(n1*n2), and in O(n1+n2) for Vogel's method). However, Russel's method normally has a lesser total running time because less pivots are required to reach the optimum for all but small problem sizes (n1+n2=~20). With this motivation behind we have incorporated a variation of the same – what we have proposed it has TMC (Total Modified Cost) to obtain fast and efficient solutions.Keywords: computation, efficiency, modified cost, Russell’s approximation method, transportation, Vogel’s approximation method
Procedia PDF Downloads 544574 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware
Authors: Abbas Ebrahimi, Mohammad Zandsalimy
Abstract:
The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware
Procedia PDF Downloads 380573 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types
Authors: Chaghoub Soraya, Zhang Xiaoyan
Abstract:
This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median
Procedia PDF Downloads 202572 Approximation of the Time Series by Fractal Brownian Motion
Authors: Valeria Bondarenko
Abstract:
In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model
Procedia PDF Downloads 374571 Approximation of Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means of Fourier Series
Authors: Smita Sonker, Uaday Singh
Abstract:
Various investigators have determined the degree of approximation of functions belonging to the classes W(L r , ξ(t)), Lip(ξ(t), r), Lip(α, r), and Lipα using different summability methods with monotonocity conditions. Recently, Lal has determined the degree of approximation of the functions belonging to Lipα and W(L r , ξ(t)) classes by using Ces`aro-N¨orlund (C 1 .Np)- summability with non-increasing weights {pn}. In this paper, we shall determine the degree of approximation of 2π - periodic functions f belonging to the function classes Lipα and W(L r , ξ(t)) by C 1 .T - means of Fourier series of f. Our theorems generalize the results of Lal and we also improve these results in the light off. From our results, we also derive some corollaries.Keywords: Lipschitz classes, product matrix operator, signals, trigonometric Fourier approximation
Procedia PDF Downloads 476570 Leverage Effect for Volatility with Generalized Laplace Error
Authors: Farrukh Javed, Krzysztof Podgórski
Abstract:
We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models
Procedia PDF Downloads 384569 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory
Authors: J. Ranjbarn, A. Alibeigloo
Abstract:
In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response
Procedia PDF Downloads 372568 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation
Authors: N. Lebga, Kh. Bouamama, K. Kassali
Abstract:
We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.Keywords: density functional theory, elastic properties, ZnS, ZnSe,
Procedia PDF Downloads 573567 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam
Authors: Geeta Partap, Nitika Chugh
Abstract:
The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.Keywords: microstretch, deflection, exponential load, Laplace transforms, residue theorem, simply supported
Procedia PDF Downloads 307566 Transient Heat Transfer of a Spiral Fin
Authors: Sen-Yung Lee, Li-Kuo Chou, Chao-Kuang Chen
Abstract:
In this study, the problem of temperature transient response of a spiral fin, with its end insulated, is analyzed with base end subjected to a variation of fluid temperature. The hybrid method of Laplace transforms/Adomian decomposed method-Padé, is applied to the temperature transient response of the fin, the result of the temperature distribution and the heat flux at the base of the spiral fin are obtained, show a good agreement in the physical phenomenon.Keywords: Laplace transforms, Adomian decomposed method- Padé, transient response, heat transfer
Procedia PDF Downloads 425565 Differential Transform Method: Some Important Examples
Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen
Abstract:
In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions
Procedia PDF Downloads 536564 The Improved Laplace Homotopy Perturbation Method for Solving Non-integrable PDEs
Authors: Noufe H. Aljahdaly
Abstract:
The Laplace homotopy perturbation method (LHPM) is an approximate method that help to compute the approximate solution for partial differential equations. The method has been used for solving several problems in science. It requires the initial condition, so it solves the initial value problem. In physics, when some important terms are taken in account, we may obtain non-integrable partial differential equations that do not have analytical integrals. This type of PDEs do not have exact solution, therefore, we need to compute the solution without initial condition. In this work, we improved the LHPM to be able to solve non-integrable problem, especially the damped PDEs, which are the PDEs that include a damping term which makes the PDEs non-integrable. We improved the LHPM by setting a perturbation parameter and an embedding parameter as the damping parameter and using the initial condition for damped PDE as the initial condition for non-damped PDE.Keywords: non-integrable PDEs, modified Kawahara equation;, laplace homotopy perturbation method, damping term
Procedia PDF Downloads 99563 Approximation of Convex Set by Compactly Semidefinite Representable Set
Authors: Anusuya Ghosh, Vishnu Narayanan
Abstract:
The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation
Procedia PDF Downloads 385562 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain
Authors: Tulin Coskun
Abstract:
We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems
Procedia PDF Downloads 336561 Degree of Approximation of Functions by Product Means
Authors: Hare Krishna Nigam
Abstract:
In this paper, for the first time, (E,q)(C,2) product summability method is introduced and two quite new results on degree of approximation of the function f belonging to Lip (alpha,r)class and W(L(r), xi(t)) class by (E,q)(C,2) product means of Fourier series, has been obtained.Keywords: Degree of approximation, (E, q)(C, 2) means, Fourier series, Lebesgue integral, Lip (alpha, r)class, W(L(r), xi(t))class of functions
Procedia PDF Downloads 516560 Approximation to the Hardy Operator on Topological Measure Spaces
Authors: Kairat T. Mynbaev, Elena N. Lomakina
Abstract:
We consider a Hardy-type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion, and bounds for its approximation numbers. Previously, bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness earlier have been found using different methods by G. Sinnamon and K. Mynbaev. Our approach is different in that we use domain partitions for all problems under consideration.Keywords: approximation numbers, boundedness and compactness, multidimensional Hardy operator, Hausdorff topological space
Procedia PDF Downloads 103559 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric
Authors: Kejal Khatri, Vishnu Narayan Mishra
Abstract:
We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability
Procedia PDF Downloads 418558 Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube
Authors: Muhammad Abdullah, Asma Rashid Butt, Nauman Raza
Abstract:
Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs.Keywords: viscous fluid, magnetic particles, fractional calculus, laplace transformation
Procedia PDF Downloads 206