Search results for: hygrothermal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: hygrothermal

3 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 136
2 Comparison of Non-destructive Devices to Quantify the Moisture Content of Bio-Based Insulation Materials on Construction Sites

Authors: Léa Caban, Lucile Soudani, Julien Berger, Armelle Nouviaire, Emilio Bastidas-Arteaga

Abstract:

Improvement of the thermal performance of buildings is a high concern for the construction industry. With the increase in environmental issues, new types of construction materials are being developed. These include bio-based insulation materials. They capture carbon dioxide, can be produced locally, and have good thermal performance. However, their behavior with respect to moisture transfer is still facing some issues. With a high porosity, the mass transfer is more important in those materials than in mineral insulation ones. Therefore, they can be more sensitive to moisture disorders such as mold growth, condensation risks or decrease of the wall energy efficiency. For this reason, the initial moisture content on the construction site is a piece of crucial knowledge. Measuring moisture content in a laboratory is a mastered task. Diverse methods exist but the easiest and the reference one is gravimetric. A material is weighed dry and wet, and its moisture content is mathematically deduced. Non-destructive methods (NDT) are promising tools to determine in an easy and fast way the moisture content in a laboratory or on construction sites. However, the quality and reliability of the measures are influenced by several factors. Classical NDT portable devices usable on-site measure the capacity or the resistivity of materials. Water’s electrical properties are very different from those of construction materials, which is why the water content can be deduced from these measurements. However, most moisture meters are made to measure wooden materials, and some of them can be adapted for construction materials with calibration curves. Anyway, these devices are almost never calibrated for insulation materials. The main objective of this study is to determine the reliability of moisture meters in the measurement of biobased insulation materials. The determination of which one of the capacitive or resistive methods is the most accurate and which device gives the best result is made. Several biobased insulation materials are tested. Recycled cotton, two types of wood fibers of different densities (53 and 158 kg/m3) and a mix of linen, cotton, and hemp. It seems important to assess the behavior of a mineral material, so glass wool is also measured. An experimental campaign is performed in a laboratory. A gravimetric measurement of the materials is carried out for every level of moisture content. These levels are set using a climatic chamber and by setting the relative humidity level for a constant temperature. The mass-based moisture contents measured are considered as references values, and the results given by moisture meters are compared to them. A complete analysis of the uncertainty measurement is also done. These results are used to analyze the reliability of moisture meters depending on the materials and their water content. This makes it possible to determine whether the moisture meters are reliable, and which one is the most accurate. It will then be used for future measurements on construction sites to assess the initial hygrothermal state of insulation materials, on both new-build and renovation projects.

Keywords: capacitance method, electrical resistance method, insulation materials, moisture transfer, non-destructive testing

Procedia PDF Downloads 76
1 A Comparative Life Cycle Assessment: The Design of a High Performance Building Envelope and the Impact on Operational and Embodied Energy

Authors: Stephanie Wall, Guido Wimmers

Abstract:

The construction and operation of buildings greatly contribute to environmental degradation through resource and energy consumption and greenhouse gas emissions. The design of the envelope system affects the environmental impact of a building in two major ways; 1) high thermal performance and air tightness can significantly reduce the operational energy of the building and 2) the material selection for the envelope largely impacts the embodied energy of the building. Life cycle assessment (LCA) is a scientific methodology that is used to systematically analyze the environmental load of processes or products, such as buildings, over their life. The paper will discuss the results of a comparative LCA of different envelope designs and the long-term monitoring of the Wood Innovation Research Lab (WIRL); a Passive House (PH), industrial building under construction in Prince George, Canada. The WIRL has a footprint of 30m x 30m on a concrete raft slab foundation and consists of shop space as well as a portion of the building that includes a two-story office/classroom space. The lab building goes beyond what was previously thought possible in regards to energy efficiency of industrial buildings in cold climates due to their large volume to surface ratio, small floor area, and high air change rate, and will be the first PH certified industrial building in Canada. These challenges were mitigated through the envelope design which utilizes solar gains while minimizing overheating, reduces thermal bridges with thick (570mm) prefabricated truss walls filled with blown in mineral wool insulation and a concrete slab and roof insulated with EPS rigid insulation. The envelope design results in lower operational and embodied energy when compared to buildings built to local codes or with steel. The LCA conducted using Athena Impact Estimator for Buildings identifies project specific hot spots as well illustrates that for high-efficiency buildings where the operational energy is relatively low; the embodied energy of the material selection becomes a significant design decision as it greatly impacts the overall environmental footprint of the building. The results of the LCA will be reinforced by long-term monitoring of the buildings envelope performance through the installation of temperature and humidity sensors throughout the floor slab, wall and roof panels and through detailed metering of the energy consumption. The data collected from the sensors will also be used to reinforce the results of hygrothermal analysis using WUFI®, a program used to verify the durability of the wall and roof panels. The WIRL provides an opportunity to showcase the use of wood in a high performance envelope of an industrial building and to emphasize the importance of considering the embodied energy of a material in the early stages of design. The results of the LCA will be of interest to leading researchers and scientists committed to finding sustainable solutions for new construction and high-performance buildings.

Keywords: high performance envelope, life cycle assessment, long term monitoring, passive house, prefabricated panels

Procedia PDF Downloads 140