Search results for: electricity price
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1970

Search results for: electricity price

20 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry

Authors: Parashram Jakappa Patil

Abstract:

India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.

Keywords: cashew, processing technology, packaging, international trade, change

Procedia PDF Downloads 394
19 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 53
18 Solymorph: Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

Solymorph, a kinetic building facade designed for optimal energy capture and architectural expression, is explored in this paper. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of novel facade systems is necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, Solymorph leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, 3D printing, and laser cutting, were utilized to fabricate the physical components. Finally, a modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of Solymorph to an existing library building at Politecnico di Milano is presented. The facade system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. Solymorph demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, Solymorph paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 19
17 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 68
16 Understanding Natural Resources Governance in Canada: The Role of Institutions, Interests, and Ideas in Alberta's Oil Sands Policy

Authors: Justine Salam

Abstract:

As a federal state, Canada’s constitutional arrangements regarding the management of natural resources is unique because it gives complete ownership and control of natural resources to the provinces (subnational level). However, the province of Alberta—home to the third largest oil reserves in the world—lags behind comparable jurisdictions in levying royalties on oil corporations, especially oil sands royalties. While Albertans own the oil sands, scholars have argued that natural resource exploitation in Alberta benefits corporations and industry more than it does Albertans. This study provides a systematic understanding of the causal factors affecting royalties in Alberta to map dynamics of power and how they manifest themselves during policy-making. Mounting domestic and global public pressure led Alberta to review its oil sands royalties twice in less than a decade through public-commissioned Royalty Review Panels, first in 2007 and again in 2015. The Panels’ task was to research best practices and to provide policy recommendations to the Government through public consultations with Albertans, industry, non-governmental organizations, and First Nations peoples. Both times, the Panels recommended a relative increase to oil sands royalties. However, irrespective of the Reviews’ recommendations, neither the right-wing 2007 Progressive Conservative Party (PC) nor the left-wing 2015 New Democratic Party (NDP) government—both committed to increase oil sands royalties—increased royalty intake. Why did two consecutive political parties at opposite ends of the political spectrum fail to account for the recommendations put forward by the Panel? Through a qualitative case-study analysis, this study assesses domestic and global causal factors for Alberta’s inability to raise oil sands royalties significantly after the two Reviews through an institutions, interests, and ideas framework. Indeed, causal factors can be global (e.g. market and price fluctuation) or domestic (e.g. oil companies’ influence on the Alberta government). The institutions, interests, and ideas framework is at the intersection of public policy, comparative studies, and political economy literatures, and therefore draws multi-faceted insights into the analysis. To account for institutions, the study proposes to review international trade agreements documents such as the North American Free Trade Agreement (NAFTA) because they have embedded Alberta’s oil sands into American energy security policy and tied Canadian and Albertan oil policy in legal international nods. To account for interests, such as how the oil lobby or the environment lobby can penetrate governmental decision-making spheres, the study draws on the Oil Sands Oral History project, a database of interviews from government officials and oil industry leaders at a pivotal time in Alberta’s oil industry, 2011-2013. Finally, to account for ideas, such as how narratives of Canada as a global ‘energy superpower’ and the importance of ‘energy security’ have dominated and polarized public discourse, the study relies on content analysis of Alberta-based pro-industry newspapers to trace the prevalence of these narratives. By mapping systematically the nods and dynamics of power at play in Alberta, the study sheds light on the factors that influence royalty policy-making in one of the largest industries in Canada.

Keywords: Alberta Canada, natural resources governance, oil sands, political economy

Procedia PDF Downloads 101
15 Lack of Regulation Leads to Complexity: A Case Study of the Free Range Chicken Meat Sector in the Western Cape, South Africa

Authors: A. Coetzee, C. F. Kelly, E. Even-Zahav

Abstract:

Dominant approaches to livestock production are harmful to the environment, human health and animal welfare, yet global meat consumption is rising. Sustainable alternative production approaches are therefore urgently required, and ‘free range’ is the main alternative for chicken meat offered in South Africa (and globally). Although the South African Poultry Association provides non-binding guidelines, there is a lack of formal definition and regulation of free range chicken production, meaning it is unclear what this alternative entails and if it is consistently practised (a trend observed globally). The objective of this exploratory qualitative case study is therefore to investigate who and what determines free range chicken. The case study, conducted from a social constructivist worldview, uses semi-structured interviews, photographs and document analysis to collect data. Interviews are conducted with those involved with bringing free range chicken to the market - farmers, chefs, retailers, and regulators. Data is analysed using thematic analysis to establish dominant patterns in the data. The five major themes identified (based on prevalence in data and on achieving the research objective) are: 1) free range means a bird reared with good animal welfare in mind, 2) free range means quality meat, 3) free range means a profitable business, 4) free range is determined by decision makers or by access to markets, and 5) free range is coupled with concerns about the lack of regulation. Unpacking the findings in the context of the literature reveals who and what determines free range. The research uncovers wide-ranging interpretations of ‘free range’, driven by the absence of formal regulation for free range chicken practices and the lack of independent private certification. This means that the term ‘free range’ is socially constructed, thus varied and complex. The case study also shows that whether chicken meat is free range is generally determined by those who have access to markets. Large retailers claim adherence to the internationally recognised Five Freedoms, also include in the South African Poultry Association Code of Good Practice, which others in the sector say are too broad to be meaningful. Producers describe animal welfare concerns as the main driver for how they practice/view free range production, yet these interpretations vary. An additional driver is a focus on human health, which participants achieve mainly through the use of antibiotic-free feed, resulting in what participants regard as higher quality meat. The participants are also strongly driven by business imperatives, with most stating that free range chicken should carry a higher price than conventionally-reared chicken due to increased production costs. Recommendations from this study focus on, inter alia, a need to understand consumers’ perspectives on free range chicken, given that those in the sector claim they are responding to consumer demand, and conducting environmental research such as life cycle assessment studies to establish the true (environmental) sustainability of free range production. At present, it seems the sector mostly responds to social sustainability: human health and animal welfare.

Keywords: chicken meat production, free range, socially constructed, sustainability

Procedia PDF Downloads 122
14 Gender Mainstreaming at the Institute of Technology Tribhuvan University Nepal: A Collaborative Approach to Architecture and Design Education

Authors: Martina Maria Keitsch, Sangeeta Singh

Abstract:

There has been a growing recognition that sustainable development needs to consider economic, social and environmental aspects including gender. In Nepal, the majority of the population lives in rural areas, and many households do not have access to electricity. In rural areas, the difficulty of accessing energy is becoming one of the greatest constraints for improving living conditions. This is particularly true for women and children, who spent much time for collecting firewood and cooking and thus are often deprived of time for education, political- and business activities. The poster introduces an education and research project financed by the Norwegian Government. The project runs from 2015-2020 and is a collaboration between the Norwegian University of Science (NTNU) and Technology Institute of Engineering (IOE), Tribhuvan University. It has the title Master program and Research in Energy for Sustainable Social Development Energy for Sustainable Social Development (MSESSD). The project addresses engineering and architecture students and comprises several integral activities towards gender mainstreaming. The following activities are conducted; 1. Creating academic opportunities, 2. Updating administrative personnel on strategies to effectively include gender issues, 3. Integrating female and male stakeholders in the design process, 4. Sensitizing female and male students for gender issues in energy systems. The project aims to enable students to design end-user-friendly solutions which can, for example, save time that can be used to generate and enhance income. Relating to gender mainstreaming, design concepts focus on smaller-scale technologies, which female stakeholders can take control of and manage themselves. Creating academic opportunities, we have a 30% female students’ rate in each master student batch in the program with the goal to educate qualified female personnel for academia and policy-making/government. This is a very ambitious target in a Nepalese context. The rate of female students, who completed the MSc program at IOE between 1998 and January 2015 is 10% out of 180 students in total. For recruiting, female students were contacted personally and encouraged to apply for the program. Further, we have established a Master course in gender mainstreaming and energy. On an administrative level, NTNU has hosted a training program for IOE on gender-mainstreaming information and -strategies for academic education. Integrating female and male stakeholders, local women groups such as, e.g., mothers group are actively included in research and education for example in planning, decision-making, and management to establish clean energy solutions. The project meets women’s needs not just practically by providing better technology, but also strategically by providing solutions that enhance their social and economic decision-making authority. Sensitizing the students for gender issues in energy systems, the project makes it mandatory to discuss gender mainstreaming based on the case studies in the Master thesis. All activities will be discussed in detail comprising an overview of MSESSD, the gender mainstreaming master course contents’, and case studies where energy solutions were co-designed with men and women as lead-users and/or entrepreneurs. The goal is to motivate educators to develop similar forms of transnational gender collaboration.

Keywords: knowledge generation on gender mainstreaming, sensitizing students, stakeholder inclusion, education strategies for design and architecture in gender mainstreaming, facilitation for cooperation

Procedia PDF Downloads 98
13 Global Evidence on the Seasonality of Enteric Infections, Malnutrition, and Livestock Ownership

Authors: Aishwarya Venkat, Anastasia Marshak, Ryan B. Simpson, Elena N. Naumova

Abstract:

Livestock ownership is simultaneously linked to improved nutritional status through increased availability of animal-source protein, and increased risk of enteric infections through higher exposure to contaminated water sources. Agrarian and agro-pastoral households, especially those with cattle, goats, and sheep, are highly dependent on seasonally various environmental conditions, which directly impact nutrition and health. This study explores global spatiotemporally explicit evidence regarding the relationship between livestock ownership, enteric infections, and malnutrition. Seasonal and cyclical fluctuations, as well as mediating effects, are further examined to elucidate health and nutrition outcomes of individual and communal livestock ownership. The US Agency for International Development’s Demographic and Health Surveys (DHS) and the United Nations International Children's Emergency Fund’s Multi-Indicator Cluster Surveys (MICS) provide valuable sources of household-level information on anthropometry, asset ownership, and disease outcomes. These data are especially important in data-sparse regions, where surveys may only be conducted in the aftermath of emergencies. Child-level disease history, anthropometry, and household-level asset ownership information have been collected since DHS-V (2003-present) and MICS-III (2005-present). This analysis combines over 15 years of survey data from DHS and MICS to study 2,466,257 children under age five from 82 countries. Subnational (administrative level 1) measures of diarrhea prevalence, mean livestock ownership by type, mean and median anthropometric measures (height for age, weight for age, and weight for height) were investigated. Effects of several environmental, market, community, and household-level determinants were studied. Such covariates included precipitation, temperature, vegetation, the market price of staple cereals and animal source proteins, conflict events, livelihood zones, wealth indices and access to water, sanitation, hygiene, and public health services. Children aged 0 – 6 months, 6 months – 2 years, and 2 – 5 years of age were compared separately. All observations were standardized to interview day of year, and administrative units were harmonized for consistent comparisons over time. Geographically weighted regressions were constructed for each outcome and subnational unit. Preliminary results demonstrate the importance of accounting for seasonality in concurrent assessments of malnutrition and enteric infections. Household assets, including livestock, often determine the intensity of these outcomes. In many regions, livestock ownership affects seasonal fluxes in malnutrition and enteric infections, which are also directly affected by environmental and local factors. Regression analysis demonstrates the spatiotemporal variability in nutrition outcomes due to a variety of causal factors. This analysis presents a synthesis of evidence from global survey data on the interrelationship between enteric infections, malnutrition, and livestock. These results provide a starting point for locally appropriate interventions designed to address this nexus in a timely manner and simultaneously improve health, nutrition, and livelihoods.

Keywords: diarrhea, enteric infections, households, livestock, malnutrition, seasonality

Procedia PDF Downloads 98
12 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community

Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa

Abstract:

In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.

Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets

Procedia PDF Downloads 74
11 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 35
10 A Lightning Strike Mimic: The Abusive Use of Dog Shock Collar Presents as Encephalopathy, Respiratory Arrest, Cardiogenic Shock, Severe Hypernatremia, Rhabdomyolysis, and Multiorgan Injury

Authors: Merrick Lopez, Aashish Abraham, Melissa Egge, Marissa Hood, Jui Shah

Abstract:

A 3 year old male with unknown medical history presented initially with encephalopathy, intubated for respiratory failure, and admitted to the pediatric intensive care unit (PICU) with refractory shock. During resuscitation in the emergency department, he was found to be in severe metabolic acidosis with a pH of 7.03 and escalated on vasopressor drips for hypotension. His initial sodium was 174. He was noted to have burn injuries to his scalp, forehead, right axilla, bilateral arm creases and lower legs. He had rhabdomyolysis (initial creatinine kinase 5,430 U/L with peak levels of 62,340 normal <335 U/L), cardiac injury (initial troponin 88 ng/L with peak at 145 ng/L, normal <15ng/L), hypernatremia (peak 174, normal 140), hypocalcemia, liver injury, acute kidney injury, and neuronal loss on magnetic resonance imaging (MRI). Soft restraints and a shock collar were found in the home. He was critically ill for 8 days, but was gradually weaned off drips, extubated, and started on feeds. Discussion Electrical injury, specifically lightning injury is an uncommon but devastating cause of injury in pediatric patients. This patient with suspected abusive use of a dog shock collar presented similar to a lightning strike. Common entrance points include the hands and head, similar to our patient with linear wounds on his forehead. When current enters, it passes through tissues with the least resistance. Nerves, blood vessels, and muscles, have high fluid and electrolyte content and are commonly affected. Exit points are extremities: our child who had circumferential burns around his arm creases and ankles. Linear burns preferentially follow areas of high sweat concentration, and are thought to be due to vaporization of water on the skin’s surface. The most common cause of death from a lightning strike is due to cardiopulmonary arrest. The massive depolarization of the myocardium can result in arrhythmias and myocardial necrosis. The patient presented in cardiogenic shock with evident cardiac damage. Electricity going through vessels can lead to vaporization of intravascular water. This can explain his severe hypernatremia. He also sustained other internal organ injuries (adrenal glands, pancreas, liver, and kidney). Electrical discharge also leads to direct skeletal muscle injury in addition to prolonged muscular spasm. Rhabdomyolysis, the acute damage of muscle, leads to release of potentially toxic components into the circulation which could lead to acute renal failure. The patient had severe rhabdomyolysis and renal injury. Early hypocalcemia has been consistently demonstrated in patients with rhabdomyolysis. This was present in the patient and led to increased vasopressor needs. Central nervous system injuries are also common which can include encephalopathy, hypoxic injury, and cerebral infarction. The patient had evidence of brain injury as seen on MRI. Conclusion Electrical injuries due to lightning strikes and abusive use of a dog shock collar are rare, but can both present in similar ways with respiratory failure, shock, hypernatremia, rhabdomyolysis, brain injury, and multiorgan damage. Although rare, it is essential for early identification and prompt management for acute and chronic complications in these children.

Keywords: cardiogenic shock, dog shock collar, lightning strike, rhabdomyolysis

Procedia PDF Downloads 59
9 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 35
8 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case

Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.

Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe

Procedia PDF Downloads 80
7 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems

Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland

Abstract:

Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.

Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up

Procedia PDF Downloads 95
6 Opportunities for Reducing Post-Harvest Losses of Cactus Pear (Opuntia Ficus-Indica) to Improve Small-Holder Farmers Income in Eastern Tigray, Northern Ethiopia: Value Chain Approach

Authors: Meron Zenaselase Rata, Euridice Leyequien Abarca

Abstract:

The production of major crops in Northern Ethiopia, especially the Tigray Region, is at subsistence level due to drought, erratic rainfall, and poor soil fertility. Since cactus pear is a drought-resistant plant, it is considered as a lifesaver fruit and a strategy for poverty reduction in a drought-affected area of the region. Despite its contribution to household income and food security in the area, the cactus pear sub-sector is experiencing many constraints with limited attention given to its post-harvest loss management. Therefore, this research was carried out to identify opportunities for reducing post-harvest losses and recommend possible strategies to reduce post-harvest losses, thereby improving production and smallholder’s income. Both probability and non-probability sampling techniques were employed to collect the data. Ganta Afeshum district was selected from Eastern Tigray, and two peasant associations (Buket and Golea) were also selected from the district purposively for being potential in cactus pear production. Simple random sampling techniques were employed to survey 30 households from each of the two peasant associations, and a semi-structured questionnaire was used as a tool for data collection. Moreover, in this research 2 collectors, 2 wholesalers, 1 processor, 3 retailers, 2 consumers were interviewed; and two focus group discussion was also done with 14 key farmers using semi-structured checklist; and key informant interview with governmental and non-governmental organizations were interviewed to gather more information about the cactus pear production, post-harvest losses, the strategies used to reduce the post-harvest losses and suggestions to improve the post-harvest management. To enter and analyze the quantitative data, SPSS version 20 was used, whereas MS-word were used to transcribe the qualitative data. The data were presented using frequency and descriptive tables and graphs. The data analysis was also done using a chain map, correlations, stakeholder matrix, and gross margin. Mean comparisons like ANOVA and t-test between variables were used. The analysis result shows that the present cactus pear value chain involves main actors and supporters. However, there is inadequate information flow and informal market linkages among actors in the cactus pear value chain. The farmer's gross margin is higher when they sell to the processor than sell to collectors. The significant postharvest loss in the cactus pear value chain is at the producer level, followed by wholesalers and retailers. The maximum and minimum volume of post-harvest losses at the producer level is 4212 and 240 kgs per season. The post-harvest loss was caused by limited farmers skill on-farm management and harvesting, low market price, limited market information, absence of producer organization, poor post-harvest handling, absence of cold storage, absence of collection centers, poor infrastructure, inadequate credit access, using traditional transportation system, absence of quality control, illegal traders, inadequate research and extension services and using inappropriate packaging material. Therefore, some of the recommendations were providing adequate practical training, forming producer organizations, and constructing collection centers.

Keywords: cactus pear, post-harvest losses, profit margin, value-chain

Procedia PDF Downloads 83
5 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries

Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria

Abstract:

Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.

Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry

Procedia PDF Downloads 143
4 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology

Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi

Abstract:

This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.

Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance

Procedia PDF Downloads 95
3 Sustainable Antimicrobial Biopolymeric Food & Biomedical Film Engineering Using Bioactive AMP-Ag+ Formulations

Authors: Eduardo Lanzagorta Garcia, Chaitra Venkatesh, Romina Pezzoli, Laura Gabriela Rodriguez Barroso, Declan Devine, Margaret E. Brennan Fournet

Abstract:

New antimicrobial interventions are urgently required to combat rising global health and medical infection challenges. Here, an innovative antimicrobial technology, providing price competitive alternatives to antibiotics and readily integratable with currently technological systems is presented. Two cutting edge antimicrobial materials, antimicrobial peptides (AMPs) and uncompromised sustained Ag+ action from triangular silver nanoplates (TSNPs) reservoirs, are merged for versatile effective antimicrobial action where current approaches fail. Antimicrobial peptides (AMPs) exist widely in nature and have recently been demonstrated for broad spectrum of activity against bacteria, viruses, and fungi. TSNP’s are highly discrete, homogenous and readily functionisable Ag+ nanoreseviors that have a proven amenability for operation within in a wide range of bio-based settings. In a design for advanced antimicrobial sustainable plastics, antimicrobial TSNPs are formulated for processing within biodegradable biopolymers. Histone H5 AMP was selected for its reported strong antimicrobial action and functionalized with the TSNP (AMP-TSNP) in a similar fashion to previously reported TSNP biofunctionalisation methods. A synergy between the propensity of biopolymers for degradation and Ag+ release combined with AMP activity provides a novel mechanism for the sustained antimicrobial action of biopolymeric thin films. Nanoplates are transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. Extrusion is used in combination with calendering rolls to create thin polymerc film where the nanoplates are embedded onto the surface. The resultant antibacterial functional films are suitable to be adapted for food packing and biomedical applications. TSNP synthesis were synthesized by adapting a previously reported seed mediated approach. TSNP synthesis was scaled up for litre scale batch production and subsequently concentrated to 43 ppm using thermally controlled H2O removal. Nanoplates were transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. This was acomplised by functionalizing the TSNP with thiol terminated polyethylene glycol and using centrifugal force to transfer them to chloroform. Polycaprolactone (PCL) and Polylactic acid (PLA) were individually processed through extrusion, TSNP and AMP-TSNP solutions were sprayed onto the polymer immediately after exiting the dye. Calendering rolls were used to disperse and incorporate TSNP and TSNP-AMP onto the surface of the extruded films. Observation of the characteristic blue colour confirms the integrity of the TSNP within the films. Antimicrobial tests were performed by incubating Gram + and Gram – strains with treated and non-treated films, to evaluate if bacterial growth was reduced due to the presence of the TSNP. The resulting films successfully incorporated TSNP and AMP-TSNP. Reduced bacterial growth was observed for both Gram + and Gram – strains for both TSNP and AMP-TSNP compared with untreated films indicating antimicrobial action. The largest growth reduction was observed for AMP-TSNP treated films demonstrating the additional antimicrobial activity due to the presence of the AMPs. The potential of this technology to impede bacterial activity in food industry and medical surfaces will forge new confidence in the battle against antibiotic resistant bacteria, serving to greatly inhibit infections and facilitate patient recovery.

Keywords: antimicrobial, biodegradable, peptide, polymer, nanoparticle

Procedia PDF Downloads 88
2 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 116
1 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 16