Search results for: Yu-Sheng Lai
4 The Influence of Feedgas Ratio on the Ethene Hydroformylation using Rh-Co Bimetallic Catalyst Supported by Reduced Graphene Oxide
Authors: Jianli Chang, Yusheng Zhang, Yali Yao, Diane Hildebrandt, Xinying Liu
Abstract:
The influence of feed-gas ratio on the ethene hydroformylation over an Rh-Co bimetallic catalyst supported by reduced graphene oxide (RGO) has been investigated in a tubular fixed bed reactor. Argon was used as balance gas when the feed-gas ratio was changed, which can keep the partial pressure of the other two kinds of gas constant while the ratio of one component in feed-gas was changed. First, the effect of single-component gas ratio on the performance of ethene hydroformylation was studied one by one (H₂, C₂H₄ and CO). Then an optimized ratio was found to obtain a high selectivity to C₃ oxygenates. The results showed that: (1) 0.5%Rh-20%Co/RGO is a promising heterogeneous catalyst for ethene hydroformylation. (2) H₂ and CO have a more significant influence than C₂H₄ on selectivity to oxygenates. (3) A lower H₂ ratio and a higher CO ratio in feed-gas can lead to a higher selectivity to oxygenates. (4) The highest selectivity to oxygenates, 61.70%, was obtained at the feed-gas ratio CO: C₂H₄: H₂ = 4: 2: 1.Keywords: ethene hydroformylation, reduced graphene oxide, rhodium cobalt bimetallic catalyst, the effect of feed-gas ratio
Procedia PDF Downloads 1643 Determinants of Mobile Payment Adoption among Retailers in Ghana
Authors: Ibrahim Masud, Yusheng Kong, Adam Diyawu Rahman
Abstract:
Mobile payment variously referred to as mobile money, mobile money transfer, and mobile wallet refers to payment services operated under financial regulation and performed from or via a mobile device. Mobile payment systems have come to augment and to some extent try to replace the conventional payment methods like cash, cheque, or credit cards. This study examines mobile payment adoption factors among retailers in Ghana. A conceptual framework was adopted from the extant literature using the Technology Acceptance Model and the Theory of Reasoned action as the theoretical bases. Data for the study was obtained from a sample of 240 respondents through a structured questionnaire. The PLS-SEM was used to analyze the data through SPSS v.22 and SmartPLS v.3. The findings indicate that factors such as perceived usefulness, perceived ease of use, perceived security, competitive pressure and facilitating conditions are the main determinants of mobile payment adoption among retailers in Ghana. The study contributes to the literature on mobile payment adoption from developing country context.Keywords: mobile payment, retailers, structural equation modeling, technology acceptance model
Procedia PDF Downloads 1812 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism
Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao
Abstract:
Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2
Procedia PDF Downloads 1061 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks
Authors: Van Trieu, Shouhuai Xu, Yusheng Feng
Abstract:
Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.Keywords: causality, multilevel graph, cyber-attacks, prediction
Procedia PDF Downloads 157