Search results for: Ubani Onyedikachi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: Ubani Onyedikachi

6 Measuring the Effect of Co-Composting Oil Sludge with Pig, Cow, Horse And Poultry Manures on the Degradation in Selected Polycyclic Aromatic Hydrocarbons Concentrations

Authors: Ubani Onyedikachi, Atagana Harrison Ifeanyichukwu, Thantsha Mapitsi Silvester

Abstract:

Components of oil sludge (PAHs) are known cytotoxic, mutagenic and potentially carcinogenic compounds also bacteria and fungi have been found to degrade PAHs to innocuous compounds. This study is aimed at measuring the effect of pig, cow, horse and poultry manures on the degradation in selected PAHs present in oil sludge. Soil spiked with oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil: manure and wood-chips in a ratio of 2:1 (w/v) spiked soil: wood-chips. Control was set up similar as the one above but without manure. The mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Highest temperature reached was 27.5 °C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78μg/dwt/day. Microbial growth and activities were enhanced; bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Percentage reduction in PAHs was measured using automated soxhlet extractor with Dichloromethane coupled with gas chromatography/mass spectrometry (GC/MS). Results from PAH measurements showed reduction between 77% and 99%. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs.

Keywords: animal manures, bioremediation, co-composting, oil refinery sludge, PAHs

Procedia PDF Downloads 273
5 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J

Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Abstract:

A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.

Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index

Procedia PDF Downloads 135
4 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
3 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke

Abstract:

The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.

Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures

Procedia PDF Downloads 254
2 Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha

Abstract:

This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control.

Keywords: bioremediation, co-composting, oil refinery sludge, PAHs, bacteria spp, animal manures, molecular techniques

Procedia PDF Downloads 476
1 Optimization of Biomass Components from Rice Husk Treated with Trichophyton Soudanense and Trichophyton Mentagrophyte and Effect of Yeast on the Bio-Ethanol Yield

Authors: Chukwuma S. Ezeonu, Ikechukwu N. E. Onwurah, Uchechukwu U. Nwodo, Chibuike S. Ubani, Chigozie M. Ejikeme

Abstract:

Trichophyton soudanense and Trichophyton mentagrophyte were isolated from the rice mill environment, cultured and used singly and as di-culture in the treatment of measure quantities of preheated rice husk. Optimized conditions studied showed that carboxymethylcellulase (CMCellulase) activity of 57.61 µg/ml/min was optimum for Trichophyton mentagrophyte heat pretreated rice husk crude enzymes at 50oC and 80oC respectively. Duration of 120 hours (5 days) gave the highest CMcellulase activity of 75.84 µg/ml/min for crude enzyme of Trichophyton mentagrophyte heat pretreated rice husk. However, 96 hours (4 days) duration gave maximum activity of 58.21 µg/ml/min for crude enzyme of Trichophyton soudanense heat pretreated rice husk. Highest CMCellulase activities of 67.02 µg/ml/min and 69.02 µg/ml/min at pH of 5 were recorded for crude enzymes of monocultures of Trichophyton soudanense (TS) and Trichophyton mentagrophyte (TM) heat pretreated rice husk respectively. Biomass components showed that rice husk cooled after heating followed by treatment with Trichophyton mentagrophyte gave 44.50 ± 10.90 (% ± Standard Error of Mean) cellulose as the highest yield. Maximum total lignin value of 28.90 ± 1.80 (% ± SEM) was obtained from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM). The hemicellulose content of 30.50 ± 2.12 (% ± SEM) from pre-heated rice husk treated with Trichophyton soudanense (TS); lignin value of 28.90 ± 1.80 from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM); also carbohydrate content of 16.79 ± 9.14 (% ± SEM) , reducing and non-reducing sugar values of 2.66 ± 0.45 and 14.13 ± 8.69 (% ± SEM) were all obtained from for pre- heated rice husk treated with Trichophyton mentagrophyte (TM). All the values listed above were the highest values obtained from each rice husk treatment. The pre-heated rice husk treated with Trichophyton mentagrophyte (TM) fermented with palmwine yeast gave bio-ethanol value of 11.11 ± 0.21 (% ± Standard Deviation) as the highest yield.

Keywords: Trichophyton soudanense, Trichophyton mentagrophyte, biomass, bioethanol, rice husk

Procedia PDF Downloads 682