Search results for: Tengiz Machaladze
6 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 3825 Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: calorimetry, entropy, heat capacity, Gibbs energy of formation, rare earth iron garnets
Procedia PDF Downloads 3544 Design of an Automatic Bovine Feeding Machine
Authors: Huseyin A. Yavasoglu, Yusuf Ziya Tengiz, Ali Göksenli
Abstract:
In this study, an automatic feeding machine for different type and class of bovine animals is designed. Daily nutrition of a bovine consists of grass, corn, straw, silage, oat, wheat and different vitamins and minerals. The amount and mixture amount of each of the nutrition depends on different parameters of the bovine. These parameters are; age, sex, weight and maternity of the bovine, also outside temperature. The problem in a farm is to constitute the correct mixture and amount of nutrition for each animal. Faulty nutrition will cause an insufficient feeding of the animal concluding in an unhealthy bovine. To solve this problem, a new automatic feeding machine is designed. Travelling of the machine is performed by four tires, which is pulled by a tractor. The carrier consists of eight bins, which each of them carries a nutrition type. Capacity of each unit is 250 kg. At the bottom of each chamber is a sensor measuring the weight of the food inside. A funnel is at the bottom of each chamber by which open/close function is controlled by a valve. Each animal will carry a RFID tag including ID on its ear. A receiver on the feeding machine will read this ID and by given previous information by the operator (veterinarian), the system will detect the amount of each nutrition unit which will be given to the selected animal for feeding. In the system, each bin will open its exit gate by the help of the valve under the control of PLC (Programmable Logic Controller). The amount of each nutrition type will be controlled by measuring the open/close time. The exit canals of the bins are collected in a reservoir. To achieve a homogenous nitration, the collected feed will be mixed by a worm gear. Further the mixture will be transported by a help of a funnel to the feeding unit of the animal. The feeding process can be performed in 100 seconds. After feeding of the animal, the tractor pulls the travelling machine to the next animal. By the help of this system animals can be feeded by right amount and mixture of nutritionKeywords: bovine, feeding, nutrition, transportation, automatic
Procedia PDF Downloads 3413 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers
Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava
Abstract:
Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks
Procedia PDF Downloads 4312 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers
Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava
Abstract:
Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles
Procedia PDF Downloads 2961 Bis-Azlactone Based Biodegradable Poly(Ester Amide)s: Design, Synthesis and Study
Authors: Kobauri Sophio, Kantaria Tengiz, Tugushi David, Puiggali Jordi, Katsarava Ramaz
Abstract:
Biodegradable biomaterials (BB) are of high interest for numerous applications in modern medicine as resorbable surgical materials and drug delivery systems. This kind of materials can be cleared from the body after the fulfillment of their function that excludes a surgical intervention for their removal. One of the most promising BBare amino acids based biodegradable poly(ester amide)s (PEAs) which are composed of naturally occurring (α-amino acids) and non-toxic building blocks such as fatty diols and dicarboxylic acids. Key bis-nucleophilic monomers for synthesizing the PEAs are diamine-diesters-di-p-toluenesulfonic acid salts of bis-(α-amino acid)-alkylenediesters (TAADs) which form the PEAs after step-growth polymerization (polycondensation) with bis-electrophilic counter-partners - activated diesters of dicarboxylic acids. The PEAs combine all advantages of the 'parent polymers' – polyesters (PEs) and polyamides (PAs): Ability of biodegradation (PEs), a high affinity with tissues and a wide range of desired mechanical properties (PAs). The scopes of applications of thePEAs can substantially be expanded by their functionalization, e.g. through the incorporation of hydrophobic fragments into the polymeric backbones. Hydrophobically modified PEAs can form non-covalent adducts with various compounds that make them attractive as drug carriers. For hydrophobic modification of the PEAs, we selected so-called 'Azlactone Method' based on the application of p-phenylene-bis-oxazolinons (bis-azlactones, BALs) as active bis-electrophilic monomers in step-growth polymerization with TAADs. Interaction of BALs with TAADs resulted in the PEAs with low MWs (Mw2,800-19,600 Da) and poor material properties. The high-molecular-weight PEAs (Mw up to 100,000) with desirable material properties were synthesized after replacement of a part of BALs with activated diester - di-p-nitrophenylsebacate, or a part of TAAD with alkylenediamine – 1,6-hexamethylenediamine. The new hydrophobically modified PEAs were characterized by FTIR, NMR, GPC, and DSC. It was shown that after the hydrophobic modification the PEAs retain the biodegradability (in vitro study catalyzed by α-chymptrypsin and lipase), and are of interest for constructing resorbable surgical and pharmaceutical devices including drug delivering containers such as microspheres. The new PEAs are insoluble in hydrophobic organic solvents such as chloroform or dichloromethane (swell only) that allowed elaborating a new technology of fabricating microspheres.Keywords: amino acids, biodegradable polymers, bis-azlactones, microspheres
Procedia PDF Downloads 175