Search results for: Sabuj Malli
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: Sabuj Malli

6 Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices

Authors: Austin Ikechukwu Gbasouzor, Sam Nna Omenyi, Sabuj Malli

Abstract:

This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted.

Keywords: activation energy, diffusion coefficients, drying model, drying time, ginger rhizomes, moisture ratio, thin layer

Procedia PDF Downloads 166
5 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing

Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik

Abstract:

The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.

Keywords: life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development

Procedia PDF Downloads 173
4 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 73
3 Exploring the Optimum Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus)

Authors: Sabuj Kanti Mazumder, Mazlan Abd Ghaffar, Simon Kumar Das

Abstract:

In this study, we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying period were significantly influenced by temperature and diet (P<0.05). The best food conversion ratio was with the shrimp group recorded at 30°C (1.33±0.08). The highest growth rate was observed in the shrimp group at 30°C (3.97±0.57% day-1), and the lowest was observed in the formulated pellet group at 22°C (1.63±0.29% day-1). No significant difference was observed between the groups subjected to temperatures of 26 and 30°C. Similarly, the lowest gastric emptying period was detected in the shrimp group at 30°C (16h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet group at 22°C (28h). Overall, the best results were observed on shrimp group subjected to a 30°C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30°C will optimize the commercial production of this commercially important fish species.

Keywords: aquaculture, diet, digestion rate, growth, Malabar blood snapper

Procedia PDF Downloads 286
2 Climate Change and Migration in the Semi-arid Tropic and Eastern Regions of India: Exploring Alternative Adaptation Strategies

Authors: Gauri Sreekumar, Sabuj Kumar Mandal

Abstract:

Contributing about 18% to India’s Gross Domestic Product, the agricultural sector plays a significant role in the Indian rural economy. Despite being the primary source of livelihood for more than half of India’s population, most of them are marginal and small farmers facing several challenges due to agro-climatic shocks. Climate change is expected to increase the risk in the regions that are highly agriculture dependent. With systematic and scientific evidence of changes in rainfall, temperature and other extreme climate events, migration started to emerge as a survival strategy for the farm households. In this backdrop, our present study aims to combine the two strands of literature and attempts to explore whether migration is the only adaptation strategy for the farmers once they experience crop failures due adverse climatic condition. Combining the temperature and rainfall information from the weather data provided by the Indian Meteorological Department with the household level panel data on Indian states belonging to the Eastern and Semi-Arid Tropics regions from the Village Dynamics in South Asia (VDSA) collected by the International Crop Research Institute for the Semi-arid Tropics, we form a rich panel data for the years 2010-2014. A Recursive Econometric Model is used to establish the three-way nexus between climate change-yield-migration while addressing the role of irrigation and local non-farm income diversification. Using Three Stage Least Squares Estimation method, we find that climate change induced yield loss is a major driver of farmers’ migration. However, irrigation and local level non-farm income diversification are found to mitigate the adverse impact of climate change on migration. Based on our empirical results, we suggest for enhancing irrigation facilities and making local non-farm income diversification opportunities available to increase farm productivity and thereby reduce farmers’ migration.

Keywords: climate change, migration, adaptation, mitigation

Procedia PDF Downloads 64
1 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 70