Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Kuforiji O. O.
2 Sensory and Microbial Properties of Fresh and Canned Calocybe indica
Authors: Apotiola Z. O., Anyakorah C. I., Kuforiji O. O.
Abstract:
Sensory and microbial properties of fresh and canned Calocybe indica (milky mushroom) were evaluated. The mushroom was grown under a controlled environment with hardwood (Cola nitida) and rice bran substrate (4:1) canned in a brine solution of salt and citric acid. Analysis was carried out using standard methods. The overall acceptability ranged between 5.62 and 6.50, with sample S30 adjudged the best. In all, significant differences p<0.01 exist in the panelist judgment. Thus, the incorporation of salt and citric acid at 3.5g and 1.5g, respectively, improved sensory attributes such as texture, aroma, color, and overall acceptability. There was no coliform and fungi growth on the samples throughout the storage period. The bacterial count, on the other hand, was observed only in the fifth and sixth week of the storage period which varied between 0.2 to 0.9 x 103 cfu/g. The highest value was observed in sample S20 of the sixth week of storage, while the lowest value was recorded in sample S30 of the sixth week of storage. Based on 16S rRNA gene sequencing, bacterial species were taxonomically confirmed as Bacillus thuringiensis. The percentile compositions and Sequence ID of the bacterial species in the mushroom was 90%.Keywords: bacterial count, microbial property, sensory, sawdust, texture
Procedia PDF Downloads 621 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications
Authors: Catherine Kuforiji, Michel Nganbe
Abstract:
The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.Keywords: SS316L, Al2O3, powder metallurgy, wear characterization
Procedia PDF Downloads 304