Search results for: Jianguo Yao
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Search results for: Jianguo Yao

12 A Nanoelectromechanical Tunable Oscillator Base on a High-Q Optical Cavity

Authors: Jianguo Huang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu

Abstract:

We developed a miniaturized tunable optomechanical oscillator based on the nanoelectromechanical systems (NEMS) technology, and its frequencies can be electrostatically tuned by as much as 10%. By taking both advantages of optical and electrical spring, the oscillator achieves a high tuning sensitivity without resorting to mechanical tension. In particular, the proposed high-Q optical cavity design greatly enhances the system sensitivity, making it extremely sensitive to the small motional signal.

Keywords: nanoelectromechanical systems (NEMS), nanotechnology, optical force, oscillator

Procedia PDF Downloads 497
11 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 364
10 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 236
9 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 222
8 An Application of Vector Error Correction Model to Assess Financial Innovation Impact on Economic Growth of Bangladesh

Authors: Md. Qamruzzaman, Wei Jianguo

Abstract:

Over the decade, it is observed that financial development, through financial innovation, not only accelerated development of efficient and effective financial system but also act as a catalyst in the economic development process. In this study, we try to explore insight about how financial innovation causes economic growth in Bangladesh by using Vector Error Correction Model (VECM) for the period of 1990-2014. Test of Cointegration confirms the existence of a long-run association between financial innovation and economic growth. For investigating directional causality, we apply Granger causality test and estimation explore that long-run growth will be affected by capital flow from non-bank financial institutions and inflation in the economy but changes of growth rate do not have any impact on Capital flow in the economy and level of inflation in long-run. Whereas, growth and Market capitalization, as well as market capitalization and capital flow, confirm feedback hypothesis. Variance decomposition suggests that any innovation in the financial sector can cause GDP variation fluctuation in both long run and short run. Financial innovation promotes efficiency and cost in financial transactions in the financial system, can boost economic development process. The study proposed two policy recommendations for further development. First, innovation friendly financial policy should formulate to encourage adaption and diffusion of financial innovation in the financial system. Second, operation of financial market and capital market should be regulated with implementation of rules and regulation to create conducive environment.

Keywords: financial innovation, economic growth, GDP, financial institution, VECM

Procedia PDF Downloads 269
7 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 120
6 Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression

Authors: Wang Jianguo, Ding Xiao, Liu Dong, Wang Haiping, Yang Yanhui, Hu Yang

Abstract:

The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully.

Keywords: inconel 718 superalloy, hot processing windows, double cone compression, uniform microstructure

Procedia PDF Downloads 218
5 Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity

Authors: Nima Pirhadi, Shao Yong Bo, Xusheng Wan, Jianguo Lu, Jilei Hu

Abstract:

Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment.

Keywords: liquefaction, gravel, dynamic penetration test, shear wave velocity

Procedia PDF Downloads 199
4 Environmental Fatigue Analysis for Control Rod Drive Mechanisms Seal House

Authors: Xuejiao Shao, Jianguo Chen, Xiaolong Fu

Abstract:

In this paper, the elastoplastic strain correction factor computed by software of ANSYS was modified, and the fatigue usage factor in air was also corrected considering in water under reactor operating condition. The fatigue of key parts on control rod drive mechanisms was analyzed considering the influence of environmental fatigue caused by the coolant in the react pressure vessel. The elastoplastic strain correction factor was modified by analyzing thermal and mechanical loads separately referring the rules of RCC-M 2002. The new elastoplastic strain correction factor Ke(mix) is computed to replace the original Ke computed by the software of ANSYS when evaluating the fatigue produced by thermal and mechanical loads together. Based on the Ke(mix) and the usage cycle and fatigue design curves, the new range of primary plus secondary stresses was evaluated to obtain the final fatigue usage factor. The results show that the precision of fatigue usage factor can be elevated by using modified Ke when the amplify of the primary and secondary stress is large to some extent. One approach has been proposed for incorporating the environmental effects considering the effects of reactor coolant environments on fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at room. To incorporate environmental effects into the RCCM Code fatigue evaluations, the fatigue usage factor based on the current Code design curves is multiplied by the correction factor. The contribution of environmental effects to results is discussed. Fatigue life decreases logarithmically with decreasing strain rate below 10%/s, which is insensitive to strain rate when temperatures below 100°C.

Keywords: environmental fatigue, usage factor, elastoplastic strain correction factor, environmental correction

Procedia PDF Downloads 323
3 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 250
2 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams

Authors: Ruoyang Tang, Jianguo Nie

Abstract:

Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.

Keywords: bracing member, construction stage, lateral-torsional buckling, steel girder system

Procedia PDF Downloads 123
1 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 143