Search results for: Fadi Thabtah
20 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)
Authors: Said Baadel, Fadi Thabtah, Joan Lu
Abstract:
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.Keywords: data mining, k-means, MCOKE, overlapping
Procedia PDF Downloads 57519 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 43218 Methods for Solving Identification Problems
Authors: Fadi Awawdeh
Abstract:
In this work, we highlight the key concepts in using semigroup theory as a methodology used to construct efficient formulas for solving inverse problems. The proposed method depends on some results concerning integral equations. The experimental results show the potential and limitations of the method and imply directions for future work.Keywords: identification problems, semigroup theory, methods for inverse problems, scientific computing
Procedia PDF Downloads 48117 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients
Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará
Abstract:
Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media
Procedia PDF Downloads 51716 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations
Authors: Rafat Alshorman, Fadi Awawdeh
Abstract:
By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method
Procedia PDF Downloads 31915 Damage in Cementitious Materials Exposed to Sodium Chloride Solution and Thermal Cycling: The Effect of Using Supplementary Cementitious Materials
Authors: Fadi Althoey, Yaghoob Farnam
Abstract:
Sodium chloride (NaCl) can interact with the tricalcium aluminate (C3A) and its hydrates in concrete matrix. This interaction can result in formation of a harmful chemical phase as the temperature changes. It is thought that this chemical phase is embroiled in the premature concrete deterioration in the cold regions. This work examines the potential formation of the harmful chemical phase in various pastes prepared by using different types of ordinary portland cement (OPC) and supplementary cementitious materials (SCMs). The quantification of the chemical phase was done by using a low temperature differential scanning calorimetry. The results showed that the chemical phase formation can be reduced by using Type V cement (low content of C3A). The use of SCMs showed different behaviors on the formation of the chemical phase. Slag and Class F fly ash can reduce the chemical phase by the dilution of cement whereas silica fume can reduce the amount of the chemical phase by dilution and pozzolanic activates. Interestingly, the use of Class C fly ash has a negative effect on concrete exposed to NaCl through increasing the formation of the chemical phase.Keywords: concrete, damage, chemcial phase, NaCl, SCMs
Procedia PDF Downloads 14314 Best Practices for Healthy Estuaries
Authors: Hassan Badkoobehi, Pradip Peter Dey, Mohammad Amin, Milan Jose Carlos, Basmal Hana, Fadi Zaco
Abstract:
The economy of coastline areas depends on the natural splendor of estuaries. When estuaries are improperly managed or polluted, long or short term damage to local economy or harm to local life forms can be caused. Estuaries are shelters for thousands of species such as birds, mammals, fish, crustaceans, insects, reptiles, and amphibians. The delicate balance of these life forms in estuaries requires careful planning for the benefit of all. The commercial value of estuaries is very important; recreational activities that people enjoy like boating, kayaking, windsurfing, swimming, bird-watching and fishing are marketable. Estuaries are national treasures with vital community and ecological resources. Years of estuarine environmental studies have produced extensive results that merit consideration. This study reviews research results from various sources and suggests best strategies for maintaining healthy estuaries in the current socioeconomic conditions. The main hypothesis is that many estuaries can be restored to their original healthy status in a cost effective manner with restoration or prevention plans suggested in published studies.Keywords: environment, pollution, sustainable, wildlife
Procedia PDF Downloads 30613 Proposed Location of Grid Connected Wind-Pv Hybrid System Based on Load Flow and Voltage Stability Indices Study
Authors: Bazilah Ismail, Muhammad Mat Naain, Ibrahim Alhamrouni, Lilik Jamilatul Awalin, Fadi Albatsh, Mohd Fairuz Abdul Hamid
Abstract:
Rapid depletion and prices of the conventional energy sources have stimulated the development of the renewable energy source (RES). Due to the unpredicted and intermittent nature of RES, the hybrid renewable energy system (HRES) is the best solution to complement the nature of the respective sources, and the combination of the wind and solar energy is rapidly gaining popularity. The significant challenges on the operation and planning of the grid system with a high HRES penetration has become an important subject since the location of HRES plant give impact towards the existing system. This paper aims to propose the location of the grid connected Wind-PV hybrid plant (WPHP) based on load flow and voltage stability indices study. Several case studies are carried out using IEEE 14 bus system, and the system is modeled and tested in DigSILENT PowerFactory.Keywords: hybrid renewable energy system, wind farm, photovoltaic system, voltage stability and load flow
Procedia PDF Downloads 31512 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties
Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni
Abstract:
Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.Keywords: multiscale model, tropocollagen, fibrils, ligaments commas
Procedia PDF Downloads 15911 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 19810 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys
Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune
Abstract:
In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis
Procedia PDF Downloads 3319 Corrosion Mitigation in Gas Facilities Piping Through the Use of FBE Coated Pipes and Corrosion Resistant Alloy Girth Welds
Authors: Fadi Chammas, Saad Alkhaldi, Tariq Alghamdi, Stefano Alexandirs
Abstract:
The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately (1700) breakout flanges, and prevent the potential hydrocarbon leaks.Keywords: pipelines, corrosion, cost-saving, project completion
Procedia PDF Downloads 1238 Membrane Distillation Process Modeling: Dynamical Approach
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati
Abstract:
This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.Keywords: membrane distillation, dynamical modeling, advection-diffusion equation, thermal equilibrium, heat equation
Procedia PDF Downloads 2727 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students
Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger
Abstract:
A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning
Procedia PDF Downloads 1656 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations
Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward
Abstract:
A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team
Procedia PDF Downloads 1435 Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures
Authors: Ahmad Shahin, Fadi Chakik, Walid Moudani
Abstract:
Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google.Keywords: semantic search engine, Google indexing, query expansion, similarity measures
Procedia PDF Downloads 4254 System Identification of Building Structures with Continuous Modeling
Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab
Abstract:
This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction
Procedia PDF Downloads 2333 Prevalence and Clinical Significance of Antiphospholipid Antibodies in COVID-19 Patients Admitted to Intensive Care Units
Authors: Mostafa Najim, Alaa Rahhal, Fadi Khir, Safae Abu Yousef, Amer Aljundi, Feryal Ibrahim, Aliaa Amer, Ahmed Soliman Mohamed, Samira Saleh, Dekra Alfaridi, Ahmed Mahfouz, Sumaya Al-Yafei, Faraj Howady, Mohamad Yahya Khatib, Samar Alemadi
Abstract:
Background: Coronavirus disease 2019 (COVID-19) increases the risk of coagulopathy among critically ill patients. Although the presence of antiphospholipid antibodies (aPLs) has been proposed as a possible mechanism of COVID-19 induced coagulopathy, their clinical significance among critically ill patients with COVID-19 remains uncertain. Methods: This prospective observational study included patients with COVID-19 admitted to intensive care units (ICU) to evaluate the prevalence and clinical significance of aPLs, including anticardiolipin IgG/IgM, anti-β2-glycoprotein IgG/IgM, and lupus anticoagulant. The study outcomes included the prevalence of aPLs, a primary composite outcome of all-cause mortality, and arterial or venous thrombosis among aPLs positive patients versus aPLs negative patients during their ICU stay. Multiple logistic regression was used to assess the influence of aPLs on the primary composite outcome of mortality and thrombosis. Results: A total of 60 critically ill patients were enrolled. Of whom, 57 (95%) were male, with a mean age of 52.8 ± 12.2 years, and the majority were from Asia (68%). Twenty-two patients (37%) were found to have positive aPLs; of whom 21 patients were positive for lupus anticoagulant, whereas one patient was positive for anti-β2-glycoprotein IgG/IgM. The composite outcome of mortality and thrombosis during ICU did not differ among patients with positive aPLs compared to those with negative aPLs (4 (18%) vs. 6 (16%), aOR= 0.98, 95% CI 0.1-6.7; p-value= 0.986). Likewise, the secondary outcomes, including all-cause mortality, venous thrombosis, arterial thrombosis, discharge from ICU, time to mortality, and time to discharge from ICU, did not differ between those with positive aPLs upon ICU admission in comparison to patients with negative aPLs. Conclusion: The presence of aPLs does not seem to affect the outcomes of critically ill patients with COVID-19 in terms of all-cause mortality and thrombosis. Therefore, clinicians may not screen critically ill patients with COVID-19 for aPLs unless deemed clinically appropriate.Keywords: antiphospholipid antibodies, critically ill patients, coagulopathy, coronavirus
Procedia PDF Downloads 1662 Bioinformatic Strategies for the Production of Glycoproteins in Algae
Authors: Fadi Saleh, Çığdem Sezer Zhmurov
Abstract:
Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.Keywords: microalgae, glycoproteins, post-translational modification, genome
Procedia PDF Downloads 241 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level
Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni
Abstract:
In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.Keywords: tropocollagen, multiscale model, fibrils, knee ligaments
Procedia PDF Downloads 128