Search results for: Fabrizio Montarsi
21 West Nile Virus in North-Eastern Italy: Overview of Integrated Surveillance Activities
Authors: Laura Amato, Paolo Mulatti, Fabrizio Montarsi, Matteo Mazzucato, Laura Gagliazzo, Michele Brichese, Manlio Palei, Gioia Capelli, Lebana Bonfanti
Abstract:
West Nile virus (WNV) re-emerged in north-eastern Italy in 2008, after ten years from its first appearance in Tuscany. In 2009, a national surveillance programme was implemented, and re-modulated in north-eastern Italy in 2011. Hereby, we present the results of surveillance activities in 2008-2016 in the north-eastern Italian regions, with inferences on WNV epidemiological trend in the area. The re-modulated surveillance programmes aimed at early detecting WNV seasonal reactivation by searching IgM antibodies in horses. In 2013, the surveillance plans were further modified including a risk-based approach. Spatial analysis techniques, including Bernoulli space-time scan-statistics, were applied to the results of 2010–2012 surveillance on mosquitoes, equines, and humans to identify areas where WNV reactivation was more likely to occur. From 2008 to 2016, residential horses tested positive for anti-WNV antibodies on a yearly basis (503 cases), also in areas where WNV circulation was not detected in mosquito populations. Surveillance activities detected 26 syndromic cases in horses, 102 infected mosquito pools and WNV in 18 dead wild birds. Human cases were also recurrently detected in the study area during the surveillance period (68 cases of West Nile neuroinvasive disease). The recurrent identification of WNV in animals, mosquitoes, and humans indicates the virus has likely become endemic in the area. In 2016, findings of WNV positives in horses or mosquitoes were included as triggers for enhancing screening activities in humans. The evolution of the epidemiological situation prompts for continuous and accurate surveillance measures. The results of the 2013-2016 surveillance indicate that the risk-based approach was effective in early detecting seasonal reactivation of WNV, key factor of the integrated surveillance strategy in endemic areas.Keywords: arboviruses, horses, Italy, surveillance, west nile virus, zoonoses
Procedia PDF Downloads 35820 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery
Authors: Mohammed Abdulhameed, Sagir M. Abdullahi
Abstract:
In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.Keywords: nanoparticles, blood flow, stenosed artery, mathematical models
Procedia PDF Downloads 26719 ANDASA: A Web Environment for Artistic and Cultural Data Representation
Authors: Carole Salis, Marie F. Wilson, Fabrizio Murgia, Cristian Lai, Franco Atzori, Giulia M. Orrù
Abstract:
ANDASA is a knowledge management platform for the capitalization of knowledge and cultural assets for the artistic and cultural sectors. It was built based on the priorities expressed by the participating artists. Through mapping artistic activities and specificities, it enables to highlight various aspects of the artistic research and production. Such instrument will contribute to create networks and partnerships, as it enables to evidentiate who does what, in what field, using which methodology. The platform is accessible to network participants and to the general public.Keywords: cultural promotion, knowledge representation, cultural maping, ICT
Procedia PDF Downloads 42618 Two-Dimensional Electron Gas with 100% Spin- Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain
Authors: Jiwuer Jilili, Fabrizio Cossu, Udo Schwingenschlogl
Abstract:
By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain.Keywords: manganite, strain, 2DEG, superlattice
Procedia PDF Downloads 34317 Evaluation of Advanced Architectures for Commercial Refrigeration Systems Using Low Global Warming Potential Refrigerants
Authors: Fabrizio Codella, Chris Parker, Samer Saab
Abstract:
The Kigali Amendment is driving the adoption of low Global Warming Potential refrigerants in commercial refrigeration systems in over a hundred countries. Several refrigeration systems for the small and large retail stores at mild and hot ambient temperature climates have been compared for hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), transcritical CO₂ and propane, in typical and advanced system architectures. The results of system performance, emissions and lifetime cost have been compared. The greatest benefits were found to be obtained by low global warming potential HFO advanced systems.Keywords: commercial refrigeration, CO₂, emissions, HFO, lifetime cost, performance
Procedia PDF Downloads 15416 Teaching Light Polarization by Putting Art and Physics Together
Authors: Fabrizio Logiurato
Abstract:
Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.Keywords: light polarization, optical activity, multidisciplinary education, science and art
Procedia PDF Downloads 21315 Heritage 3D Digitalization Combining High Definition Photogrammetry with Metrologic Grade Laser Scans
Authors: Sebastian Oportus, Fabrizio Alvarez
Abstract:
3D digitalization of heritage objects is widely used nowadays. However, the most advanced 3D scanners in the market that capture topology and texture at the same time, and are specifically made for this purpose, don’t deliver the accuracy that is needed for scientific research. In the last three years, we have developed a method that combines the use of Metrologic grade laser scans, that allows us to work with a high accuracy topology up to 15 times more precise and combine this mesh with a texture obtained from high definition photogrammetry with up to 100 times more pixel concentrations. The result is an accurate digitalization that promotes heritage preservation, scientific study, high detail reproduction, and digital restoration, among others. In Chile, we have already performed 478 digitalizations of high-value heritage pieces and compared the results with up to five different digitalization methods; the results obtained show a considerable better dimensional accuracy and texture resolution. We know the importance of high precision and resolution for academics and museology; that’s why our proposal is to set a worldwide standard using this open source methodology.Keywords: 3D digitalization, digital heritage, heritage preservation, digital restauration, heritage reproduction
Procedia PDF Downloads 18814 Modal Density Influence on Modal Complexity Quantification in Dynamic Systems
Authors: Fabrizio Iezzi, Claudio Valente
Abstract:
The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system.Keywords: complex mode shapes, dynamic systems identification, modal density, non-proportional damping
Procedia PDF Downloads 38713 Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oils of Different Pinus Species from Kosovo
Authors: Fatbardhë Kurti, Giangiacomo Beretta, Behxhet Mustafa, Fabrizio Gelmini, Avni Hajdari
Abstract:
Chemical profile, antioxidant and antimicrobial activity of total and fractionated essential oils (EOs) (F1 – hexane, F2 – hexane/diethyl ether, F3 – diethyl ether) derived from five Pinus species (Pinus heldreichii, P. peuce, P. mugo, Pinus nigra, P. sylvestris), were investigated. The hydrodistilled EOs and their chromatographic fractions (direct solid phase extraction, SPE) were analysed by GC-MS and 112 compounds separated and identified. The main constituents were α-pinene, β-pinene, D-limonene, β-caryophyllene, germacrene D, bornyl acetate and 3-carene. The antioxidant activities of total EOs were lower than those of the corresponding fractions, with F2 the strongest in all cases. EOs and fractions showed different degrees of antibacterial efficacy against different microbial pathogens (moderately strong antimicrobial activity against C. albicans and C. krusei ,while low or no activity against E. faecalis and E. coli strains). The detected inhibition zones and MICs for the EOs and fractions were in the range of 14 -35 mm and 0.125 - 1% (v/v), respectively. The components responsible for the antioxidant and antimicrobial activity were oxygenated monoterpenes and sesquiterpenes recovered in the polar EO fractions. These activities seem to be regulated by reciprocal interactions among the different subclasses of phytochemical species present in the EOs.Keywords: antagonism, antioxidant activity, antibacterial activity, essential oil, fractions, GC-MS, pinus
Procedia PDF Downloads 23212 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness
Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta
Abstract:
Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called BLINDED, designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.Keywords: human computer interaction, interaction design guidelines, persuasive mobile technologies for sport and health
Procedia PDF Downloads 53211 Digital Transformation: The Effect of Artificial Intelligence on the Efficiency of Financial Administrative Workers in Peru in 2024
Authors: Thiago Fabrizio Gavilano Farje, Marcelo Patricio Herrera Malpartida
Abstract:
This study examines the influence of artificial intelligence (AI) on the work efficiency of administrative employees in the financial sector of Metropolitan Lima, Peru, during the year 2024. Focusing on the relationship between AI implementation and work efficiency, it addresses specific variables such as decision-making, motivation, and employee productivity. To accomplish the analysis between AI and work efficiency within the financial sector of Metropolitan Lima, it is necessary to evaluate how AI optimizes time in administrative tasks, examine how AI impacts the agility of the process of making decisions, and investigate the influence of AI on the satisfaction and motivation of employees. The research adopts a correlational and explanatory approach, designed to establish and understand the connections between AI and work efficiency. A survey design adapted from an OECD study is used, applying questionnaires to a representative sample of administrative workers in the financial sector who incorporate AI into their functions. The target population includes administrative workers in the financial sector of Metropolitan Lima, estimated at 73,097 employees based on data from the Censo Nacional de Empresas y Establecimientos and studies by the BCRP. The sample, selected through simple random sampling, comprises 246 workers.Keywords: business management, artificial intelligence, decision making, labor efficiency, financial sector
Procedia PDF Downloads 5010 Guidelines for the Sustainable Development of Agriphotovoltaics in Orchard Cultivation: An Approach for Their Harmonious Application in the Natural, Landscape and Socio-Cultural Context of South Tyrol
Authors: Fabrizio Albion
Abstract:
In response to the escalating recognition of the need to combat climate change, renewable energy sources (RES), particularly solar energy, have witnessed exponential growth. The intricate nature of agriphotovoltaics, which combines agriculture and solar energy production, demands rapid legislative and technological development, facing various challenges and multifaceted design. This complexity is also represented by its application for orchard cultivation (APVO), which, in the first part of this research, was studied in its environmental, economic, and sociocultural aspects. Insights from literature, case studies, and consultations with experts contributed valuable perspectives, forming a robust foundation for understanding and integrating APVO into rural environments, including those in the South Tyrolean context. For its harmonious integration into the sensitive Alpine landscape, the second part was then dedicated to the development of guidelines, from the identification of the requirements to be defined as APVO to its design flexibilities for being integrated into the context. As a basis for further considerations, the drafting of these guidelines was preceded by a program of interviews conducted to investigate the social perceptions of farmers, citizens and tourists on the potential integration of APVO in the fruit-growing valleys of the province. Conclusive results from the data collected in the first phase are, however, still pending. Due to ongoing experiments and data collection, the current results, although being generally positive, cannot guarantee a definitive exclusion of potential negative impacts on the crop. The guidelines developed should, therefore, be understood as an initial exploration, providing a basis for future updates, also in synergy with the evolution of existing local projects.Keywords: agriphotovoltaics, Alpin agricultural landscapes, landscape impact assessment, renewable energy
Procedia PDF Downloads 189 Designing Product-Service-System Applied to Reusable Packaging Solutions: A Strategic Design Tool
Authors: Yuan Long, Fabrizio Ceschin, David Harrison
Abstract:
Environmental sustainability is under the threat of excessive single-use plastic packaging waste, and current waste management fails to address this issue. Therefore, it has led to a reidentification of the alternative, which can curb the packaging waste without reducing social needs. Reusable packaging represents a circular approach to close the loop of consumption in which packaging can stay longer in the system to satisfy social needs. However, the implementation of reusable packaging is fragmented and lacks systematic approaches. The product-service system (PSS) is widely regarded as a sustainable business model innovation for embracing circular consumption. As a result, applying PSS to reusable packaging solutions will be promising to address the packaging waste issue. This paper aims at filling the knowledge gap relating to apply PSS to reusable packaging solutions and provide a strategic design tool that could support packaging professionals to design reusable packaging solutions. The methodology of this paper is case studies and workshops to provide a design tool. The respondents are packaging professionals who are packaging consultants, NGO professionals, and entrepreneurs. 57 cases collected show that 15 archetypal models operate in the market. Subsequently, a polarity diagram is developed to embrace those 15 archetypal models, and a total number of 24 experts were invited for the workshop to evaluate the design tool. This research finally provides a strategic design tool to support packaging professionals to design reusable packaging solutions. The application of the tool is to support the understanding of the reusable packaging solutions, analyzing the markets, identifying new opportunities, and generate new business models. The implication of this research is to provide insights for academics and businesses in terms of tackling single-use packaging waste and build a foundation for further development of the reusable packaging solution tool.Keywords: environmental sustainability, product-service system, reusable packaging, design tool
Procedia PDF Downloads 1498 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum
Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza
Abstract:
Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin
Procedia PDF Downloads 1087 Seasonal Variations, Environmental Parameters, and Standing Crop Assessment of Benthic Foraminifera in Western Bahrain, Arabian Gulf
Authors: Muhammad Arslan, Michael A. Kaminski, Bassam S. Tawabini, Fabrizio Frontalini
Abstract:
We conducted a survey of living benthic foraminifera in a relatively unpolluted site of Bahrain in the Arabian Gulf, with the aim of determining the seasonal variability in their populations, as well as various environmental parameters that affect their distribution. The maximum standing crop was observed during winter, with highest population of rotaliids, followed by a peak in miliolids. The highest population is attributed to an increasing number juveniles observed along the depth transect. A strong correlation between sediment grain size and the foraminiferal population indicates that juveniles were most abundant on coarser sandy substrate and less abundant on fine substrate. In spring, the total living population decreased, and lowest values are observed in the summer. The population started to increase again in the autumn with highest juveniles/adult ratios. Moreover, results of relative abundance and species consistency show that Ammonia is found to be consistent from the shallowest to the deepest station, whereas miliolids start appearing in the deeper stations. The average numbers of Peneroplis and Elphidium also increases along the depth transect. Environmental characterization reveals that although the site is subjected to eutrophication caused by nitrates and sulfates, pollution caused by hydrocarbons and heavy metals is not significant. The assessment of 63 heavy metals showed that none of the metals had concentrations that exceed internationally accepted norms [the devised level of Effect Range-Low], with the exception of strontium. The lack of a significant environmental effect of heavy metals is confirmed by a Foraminiferal Deformities Index value of less than 2%. Likewise, no hydrocarbon contamination was detected in the water or sediment samples. Lastly, observations of cytoplasmic streaming and pseudopodial activity in Petri dishes suggest that the foraminiferal population is not stressed. We conclude that the site in Bahrain is not yet adversely affected by human development, and therefore can provide baseline information for future comparison and assessment of foraminiferal assemblages in contaminated zones of the Arabian Gulf.Keywords: Arabian Gulf, benthic foraminifera, standing crop, Western Bahrain
Procedia PDF Downloads 6446 SAFECARE: Integrated Cyber-Physical Security Solution for Healthcare Critical Infrastructure
Authors: Francesco Lubrano, Fabrizio Bertone, Federico Stirano
Abstract:
Modern societies strongly depend on Critical Infrastructures (CI). Hospitals, power supplies, water supplies, telecommunications are just few examples of CIs that provide vital functions to societies. CIs like hospitals are very complex environments, characterized by a huge number of cyber and physical systems that are becoming increasingly integrated. Ensuring a high level of security within such critical infrastructure requires a deep knowledge of vulnerabilities, threats, and potential attacks that may occur, as well as defence and prevention or mitigation strategies. The possibility to remotely monitor and control almost everything is pushing the adoption of network-connected devices. This implicitly introduces new threats and potential vulnerabilities, posing a risk, especially to those devices connected to the Internet. Modern medical devices used in hospitals are not an exception and are more and more being connected to enhance their functionalities and easing the management. Moreover, hospitals are environments with high flows of people, that are difficult to monitor and can somehow easily have access to the same places used by the staff, potentially creating damages. It is therefore clear that physical and cyber threats should be considered, analysed, and treated together as cyber-physical threats. This means that an integrated approach is required. SAFECARE, an integrated cyber-physical security solution, tries to respond to the presented issues within healthcare infrastructures. The challenge is to bring together the most advanced technologies from the physical and cyber security spheres, to achieve a global optimum for systemic security and for the management of combined cyber and physical threats and incidents and their interconnections. Moreover, potential impacts and cascading effects are evaluated through impact propagation models that rely on modular ontologies and a rule-based engine. Indeed, SAFECARE architecture foresees i) a macroblock related to cyber security field, where innovative tools are deployed to monitor network traffic, systems and medical devices; ii) a physical security macroblock, where video management systems are coupled with access control management, building management systems and innovative AI algorithms to detect behavior anomalies; iii) an integration system that collects all the incoming incidents, simulating their potential cascading effects, providing alerts and updated information regarding assets availability.Keywords: cyber security, defence strategies, impact propagation, integrated security, physical security
Procedia PDF Downloads 1665 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients
Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini
Abstract:
Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker
Procedia PDF Downloads 994 Nanowire Substrate to Control Differentiation of Mesenchymal Stem Cells
Authors: Ainur Sharip, Jose E. Perez, Nouf Alsharif, Aldo I. M. Bandeas, Enzo D. Fabrizio, Timothy Ravasi, Jasmeen S. Merzaban, Jürgen Kosel
Abstract:
Bone marrow-derived human mesenchymal stem cells (MSCs) are attractive candidates for tissue engineering and regenerative medicine, due to their ability to differentiate into osteoblasts, chondrocytes or adipocytes. Differentiation is influenced by biochemical and biophysical stimuli provided by the microenvironment of the cell. Thus, altering the mechanical characteristics of a cell culture scaffold can directly influence a cell’s microenvironment and lead to stem cell differentiation. Mesenchymal stem cells were cultured on densely packed, vertically aligned magnetic iron nanowires (NWs) and the effect of NWs on the cell cytoskeleton rearrangement and differentiation were studied. An electrochemical deposition method was employed to fabricate NWs into nanoporous alumina templates, followed by a partial release to reveal the NW array. This created a cell growth substrate with free-standing NWs. The Fe NWs possessed a length of 2-3 µm, with each NW having a diameter of 33 nm on average. Mechanical stimuli generated by the physical movement of these iron NWs, in response to a magnetic field, can stimulate osteogenic differentiation. Induction of osteogenesis was estimated using an osteogenic marker, osteopontin, and a reduction of stem cell markers, CD73 and CD105. MSCs were grown on the NWs, and fluorescent microscopy was employed to monitor the expression of markers. A magnetic field with an intensity of 250 mT and a frequency of 0.1 Hz was applied for 12 hours/day over a period of one week and two weeks. The magnetically activated substrate enhanced the osteogenic differentiation of the MSCs compared to the culture conditions without magnetic field. Quantification of the osteopontin signal revealed approximately a seven-fold increase in the expression of this protein after two weeks of culture. Immunostaining staining against CD73 and CD105 revealed the expression of antibodies at the earlier time point (two days) and a considerable reduction after one-week exposure to a magnetic field. Overall, these results demonstrate the application of a magnetic NW substrate in stimulating the osteogenic differentiation of MSCs. This method significantly decreases the time needed to induce osteogenic differentiation compared to commercial biochemical methods, such as osteogenic differentiation kits, that usually require more than two weeks. Contact-free stimulation of MSC differentiation using a magnetic field has potential uses in tissue engineering, regenerative medicine, and bone formation therapies.Keywords: cell substrate, magnetic nanowire, mesenchymal stem cell, stem cell differentiation
Procedia PDF Downloads 1973 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.Keywords: energy simulation, modelling calibration, occupant behavior, university building
Procedia PDF Downloads 1412 Energy Refurbishment of University Building in Cold Italian Climate: Energy Audit and Performance Optimization
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The Directive 2010/31/EC 'Directive of the European Parliament and of the Council of 19 may 2010 on the energy performance of buildings' moved the targets of the previous version toward more ambitious targets, for instance by establishing that, by 31 December 2020, all new buildings should demand nearly zero-energy. Moreover, the demonstrative role of public buildings is strongly affirmed so that also the target nearly zero-energy buildings is anticipated, in January 2019. On the other hand, given the very low turn-over rate of buildings (in Europe, it ranges between 1-3%/yearly), each policy that does not consider the renovation of the existing building stock cannot be effective in the short and medium periods. According to this proposal, the study provides a novel, holistic approach to design the refurbishment of educational buildings in colder cities of Mediterranean regions enabling stakeholders to understand the uncertainty to use numerical modelling and the real environmental and economic impacts of adopting some energy efficiency technologies. The case study is a university building of Molise region in the centre of Italy. The proposed approach is based on the application of the cost-optimal methodology as it is shown in the Delegate Regulation 244/2012 and Guidelines of the European Commission, for evaluating the cost-optimal level of energy performance with a macroeconomic approach. This means that the refurbishment scenario should correspond to the configuration that leads to lowest global cost during the estimated economic life-cycle, taking into account not only the investment cost but also the operational costs, linked to energy consumption and polluting emissions. The definition of the reference building has been supported by various in-situ surveys, investigations, evaluations of the indoor comfort. Data collection can be divided into five categories: 1) geometrical features; 2) building envelope audit; 3) technical system and equipment characterization; 4) building use and thermal zones definition; 5) energy building data. For each category, the required measures have been indicated with some suggestions for the identifications of spatial distribution and timing of the measurements. With reference to the case study, the collected data, together with a comparison with energy bills, allowed a proper calibration of a numerical model suitable for the hourly energy simulation by means of EnergyPlus. Around 30 measures/packages of energy, efficiency measure has been taken into account both on the envelope than regarding plant systems. Starting from results, two-point will be examined exhaustively: (i) the importance to use validated models to simulate the present performance of building under investigation; (ii) the environmental benefits and the economic implications of a deep energy refurbishment of the educational building in cold climates.Keywords: energy simulation, modelling calibration, cost-optimal retrofit, university building
Procedia PDF Downloads 1801 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection
Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément
Abstract:
The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars
Procedia PDF Downloads 117