Search results for: Carsten Jurgens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: Carsten Jurgens

6 Slum Dwellers Residential Location Choices Decision: A Determinant of Slum Growth in Lagos Mega City

Authors: Olabisi Badmos, Daniel Callo-Concha, Babatunde Agbola, Andreas Rienow, Klaus Greve, Carsten Jurgens

Abstract:

Slums are important components of city development planning, especially in Africa where slum growth is on par with urban growth. Purposefully, our knowledge on the residential choice of slum dwellers, which contributes to population growth in slums, is limited. This is the case in Lagos, a megacity reportedly dominated by slum dwellers. Thus, this study aims to disclose the factors influencing the residential choices and causes of people to remain in Lagos slums. Data was collected through questionnaire administration and focus group discussions. Descriptive statistics were used to analyze and describe the factors influencing residential location choice; logistic regression was utilized to determine the extent to which the neighborhood and household attributes, influence slum dwellers decisions to remain in the slums. Results showed that movement to Lagos was the main cause of population growth in slums; most of the migrants were from closer geopolitical zones (in Nigeria). Further, the movement patterns observed support two theories of human mobility in slums: slum as a sink, and as a final destination. Also, the factors that brought most of the slum dwellers to the slums (cheap housing, proximity to work etc.) differs from the ones that made them stay (Gender, employment status, housing status etc.). This study concludes that residential choice and intention to stay are the major contributors to population growth in a slum. It is therefore important for Lagos state Government to incorporate these elements of residential choices of slum dwellers in their slum management policies if the city aims to be free of slums by 2030

Keywords: Lagos, population growth, residential decision choices, slum

Procedia PDF Downloads 171
5 Forecasting of COVID-19 Cases, Hospitalization Admissions, and Death Cases Based on Wastewater Sars-COV-2 Surveillance Using Copula Time Series Model

Authors: Hueiwang Anna Jeng, Norou Diawara, Nancy Welch, Cynthia Jackson, Rekha Singh, Kyle Curtis, Raul Gonzalez, David Jurgens, Sasanka Adikari

Abstract:

Modeling effort is needed to predict the COVID-19 trends for developing management strategies and adaptation measures. The objective of this study was to assess whether SARS-CoV-2 viral load in wastewater could serve as a predictor for forecasting COVID-19 cases, hospitalization cases, and death cases using copula-based time series modeling. SARS-CoV-2 RNA load in raw wastewater in Chesapeake VA was measured using the RT-qPCR method. Gaussian copula time series marginal regression model, incorporating an autoregressive moving average model and the copula function, served as a forecasting model. COVID-19 cases were correlated with wastewater viral load, hospitalization cases, and death cases. The forecasted trend of COVID-19 cases closely paralleled one of the reported cases, with over 90% of the forecasted COVID-19 cases falling within the 99% confidence interval of the reported cases. Wastewater SARS-CoV-2 viral load could serve as a predictor for COVID-19 cases and hospitalization cases.

Keywords: COVID-19, modeling, time series, copula function

Procedia PDF Downloads 69
4 Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture

Authors: Mohamed T. El-Hawary, Carsten Koenke, Amr M. El-Nemr, Nagy F. Hanna

Abstract:

Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete.

Keywords: coarse aggregate replacement, economical designs, green concrete, marble aggregates, sustainability, waste management

Procedia PDF Downloads 148
3 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 158
2 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives

Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai

Abstract:

Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.

Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde

Procedia PDF Downloads 240
1 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor

Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang

Abstract:

The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.

Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics

Procedia PDF Downloads 240