Search results for: Beattie magnetic anomaly
1596 Magnetic Investigation and 2½D Gravity Profile Modelling across the Beattie Magnetic Anomaly in the Southeastern Karoo Basin, South Africa
Authors: Christopher Baiyegunhi, Oswald Gwavava
Abstract:
The location/source of the Beattie magnetic anomaly (BMA) and interconnectivity of geologic structures at depth have been a topic of investigation for over 30 years. Up to now, no relationship between geological structures (interconnectivity of dolerite intrusions) at depth has been established. Therefore, the environmental impact of fracking the Karoo for shale gas could not be assessed despite the fact that dolerite dykes are groundwater localizers in the Karoo. In this paper, we shed more light to the unanswered questions concerning the possible location of the source of the BMA, the connectivity of geologic structures like dolerite dykes and sills at depth and this relationship needs to be established before the tectonic evolution of the Karoo basin can be fully understood and related to fracking of the Karoo for shale gas. The result of the magnetic investigation and modelling of four gravity profiles that crosses the BMA in the study area reveals that the anomaly, which is part of the Beattie magnetic anomaly tends to divide into two anomalies and continue to trend in an NE-SW direction, the dominant gravity signatures is of long wavelength that is due to a deep source/interface inland and shallows towards the coast, the average depth to the top of the shallow and deep magnetic sources was estimated to be approximately 0.6 km and 15 km, respectively. The BMA become stronger with depth which could be an indication that the source(s) is deep possibly a buried body in the basement. The bean-shaped anomaly also behaves in a similar manner like the BMA thus it could possibly share the same source(s) with the BMA.Keywords: Beattie magnetic anomaly, magnetic sources, modelling, Karoo Basin
Procedia PDF Downloads 5541595 A Study on the Magnetic and Submarine Geology Structure of TA22 Seamount in Lau Basin, Tonga
Authors: Soon Young Choi, Chan Hwan Kim, Chan Hong Park, Hyung Rae Kim, Myoung Hoon Lee, Hyeon-Yeong Park
Abstract:
We performed the marine magnetic, bathymetry and seismic survey at the TA22 seamount (in the Lau basin, SW Pacific) for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry data sets by suing Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.), Multi-beam Echo Sounder EM120 (Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduction to the pole (RTP) and magnetization. Based on the magnetic properties result, we analyzed submarine geology structure of TA22 seamount with post-processed seismic profile. The detailed bathymetry of the TA22 seamount showed the left and right crest parts that have caldera features in each crest central part. The magnetic anomaly distribution of the TA22 seamount regionally displayed high magnetic anomalies in northern part and the low magnetic anomalies in southern part around the caldera features. The RTP magnetic anomaly distribution of the TA22 seamount presented commonly high magnetic anomalies in the each caldera central part. Also, it represented strong anomalies at the inside of caldera rather than outside flank of the caldera. The magnetization distribution of the TA22 seamount showed the low magnetization zone in the center of each caldera, high magnetization zone in the southern and northern east part. From analyzed the seismic profile map, The TA22 seamount area is showed for the inferred small mounds inside each caldera central part and it assumes to make possibility of sills by the magma in cases of the right caldera. Taking into account all results of this study (bathymetry, magnetic anomaly, RTP, magnetization, seismic profile) with rock samples at the left caldera area in 2009 survey, we suppose the possibility of hydrothermal deposits at mounds in each caldera central part and at outside flank of the caldera representing the low magnetization zone. We expect to have the better results by combined modeling from this study data with the other geological data (ex. detailed gravity, 3D seismic, petrologic study results and etc).Keywords: detailed bathymetry, magnetic anomaly, seamounts, seismic profile, SW Pacific
Procedia PDF Downloads 4001594 In Search of CO₂: Gravity and Magnetic Data for Eor Prospect Generation in Central Libya
Authors: Ahmed Saheel, Milad Ahmed Elmaradi, Tim Archer, Muammer Ahmed Aboaesha, Abdulkhaliq Abdulmajid Altoubashi
Abstract:
Enhanced oil recovery using carbon dioxide (CO₂-EOR) is a method that can increase oil production beyond what is typically achievable using conventional recovery methods by injecting and hence storing, carbon dioxide (CO₂) in the oil reservoir. In Libya, plans are underway to source a proportion of this CO₂ from subsurface geology that is known from previous drilling to contain high volumes of CO₂. But first, these subsurface volumes need to be more clearly defined and understood. Focusing on the Al-Harouj region of central Libya, ground gravity and airborne magnetic data from the LPI database and the African Magnetic Mapping Project respectively have been prepared and processed by Libyan Petroleum Institute (LPI) and Reid Geophysics Limited (RGL) to produce a range of grids and related products suitable for interpreting geological structure and to make recommendations for subsequent work that will assist CO₂ exploration for purposes of enhanced oil recovery (EOR).Keywords: gravity anomaly, magnetic anomaly, DEDUCED lineaments, Total horizontal derivative, upward-continuation
Procedia PDF Downloads 1251593 Structural, Magnetic and Thermodynamic Investigation of Iridium Double Perovskites with Ir⁵⁺
Authors: Mihai I. Sturza, Laura T. Corredor, Kaustuv Manna, Gizem A. Cansever, Tushar Dey, Andrey Maljuk, Olga Kataeva, Sabine Wurmehl, Anja Wolter, Bernd Buchner
Abstract:
Recently, the iridate double perovskite Sr₂YIrO₆ has attracted considerable attention due to the report of unexpected magnetism in this Ir⁵⁺ material, in which according to the Jeff model, a non-magnetic ground state is expected. Structural, magnetic and thermodynamic investigations of Sr₂YIrO₆ and Ba2YIrO6 single crystals, with emphasis on the temperature and magnetic field dependence of the specific heat will be presented. The single crystals were grown by using SrCl₂ and BaCl₂ as flux. Single-crystal X-ray diffraction measurements performed on several crystals from different preparation batches showed a high quality of the crystals, proven by the good internal consistency of the data collected using the full-sphere mode and an extremely low R factor. In agreement with the expected non-magnetic ground state of Ir⁵⁺ (5d4) in these iridates, no magnetic transition is observed down to 430 mK. Moreover, our results suggest that the low-temperature anomaly observed in the specific heat is not related to the onset of long-range magnetic order. Instead, it is identified as a Schottky anomaly caused by paramagnetic impurities present in the sample, of the order ofKeywords: double perovskites, iridates, self-flux grown synthesis, spin-orbit coupling
Procedia PDF Downloads 3291592 Analysis of Magnetic Anomaly Data for Identification Structure in Subsurface of Geothermal Manifestation at Candi Umbul Area, Magelang, Central Java Province, Indonesia
Authors: N. A. Kharisa, I. Wulandari, R. Narendratama, M. I. Faisal, K. Kirana, R. Zipora, I. Arfiansah, I. Suyanto
Abstract:
Acquisition of geophysical survey with magnetic method has been done in manifestation of geothermalat Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. This objective research is interpretation to interpret structural geology that control geothermal system in CandiUmbul area. The research has been finished with area size 1,5 km x 2 km and measurement space of 150 m. And each point of line space survey is 150 m using PPM Geometrics model G-856. Data processing was started with IGRF and diurnal variation correction to get total magnetic field anomaly. Then, advance processing was done until reduction to pole, upward continuation, and residual anomaly. That results become next interpretation in qualitative step. It is known that the biggest object position causes low anomaly located in central of area survey that comes from hot spring manifestation and demagnetization zone that indicates the existence of heat source activity. Then, modeling the anomaly map was used for quantitative interpretation step. The result of modeling is rock layers and geological structure model that can inform about the geothermal system. And further information from quantitative interpretations can be interpreted about lithology susceptibility. And lithology susceptibilities are andesiteas heat source has susceptibility value of (k= 0.00014 emu), basaltic as alteration rock (k= 0.0016 emu), volcanic breccia as reservoir rock (k= 0.0026 emu), andesite porfirtic as cap rock (k= 0.004 emu), lava andesite (k= 0.003 emu), and alluvium (k= 0.0007 emu). The hot spring manifestation is controlled by the normal fault which becomes a weak zone, easily passed by hot water which comes from the geothermal reservoir.Keywords: geological structure, geothermal system, magnetic, susceptibility
Procedia PDF Downloads 3841591 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia
Authors: Ikawati Wulandari
Abstract:
Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakageKeywords: PPM, Geothermal, Fault, Grabag
Procedia PDF Downloads 4641590 Application of Aerogeomagnetic and Ground Magnetic Surveys for Deep-Seated Kimberlite Pipes in Central India
Authors: Utkarsh Tripathi, Bikalp C. Mandal, Ravi Kumar Umrao, Sirsha Das, M. K. Bhowmic, Joyesh Bagchi, Hemant Kumar
Abstract:
The Central India Diamond Province (CIDP) is known for the occurrences of primary and secondary sources for diamonds from the Vindhyan platformal sediments, which host several kimberlites, with one operating mine. The known kimberlites are Neo-Proterozoic in age and intrude into the Kaimur Group of rocks. Based on the interpretation of areo-geomagnetic data, three potential zones were demarcated in parts of Chitrakoot and Banda districts, Uttar Pradesh, and Satna district, Madhya Pradesh, India. To validate the aero-geomagnetic interpretation, ground magnetic coupled with a gravity survey was conducted to validate the anomaly and explore the possibility of some pipes concealed beneath the Vindhyan sedimentary cover. Geologically the area exposes the milky white to buff-colored arkosic and arenitic sandstone belonging to the Dhandraul Formation of the Kaimur Group, which are undeformed and unmetamorphosed providing almost transparent media for geophysical exploration. There is neither surface nor any geophysical indication of intersections of linear structures, but the joint patterns depict three principal joints along NNE-SSW, ENE-WSW, and NW-SE directions with vertical to sub-vertical dips. Aeromagnetic data interpretation brings out three promising zones with the bi-polar magnetic anomaly (69-602nT) that represent potential kimberlite intrusive concealed below at an approximate depth of 150-170m. The ground magnetic survey has brought out the above-mentioned anomalies in zone-I, which is congruent with the available aero-geophysical data. The magnetic anomaly map shows a total variation of 741 nT over the area. Two very high magnetic zones (H1 and H2) have been observed with around 500 nT and 400 nT magnitudes, respectively. Anomaly zone H1 is located in the west-central part of the area, south of Madulihai village, while anomaly zone H2 is located 2km apart in the north-eastern direction. The Euler 3D solution map indicates the possible existence of the ultramafic body in both the magnetic highs (H1 and H2). The H2 high shows the shallow depth, and H1 shows a deeper depth solution. In the reduced-to-pole (RTP) method, the bipolar anomaly disappears and indicates the existence of one causative source for both anomalies, which is, in all probabilities, an ultramafic suite of rock. The H1 magnetic high represents the main body, which persists up to depths of ~500m, as depicted through the upward continuation derivative map. Radially Averaged Power Spectrum (RAPS) shows the thickness of loose sediments up to 25m with a cumulative depth of 154m for sandstone overlying the ultramafic body. The average depth range of the shallower body (H2) is 60.5-86 meters, as estimated through the Peters half slope method. Magnetic (TF) anomaly with BA contour also shows high BA value around the high zones of magnetic anomaly (H1 and H2), which suggests that the causative body is with higher density and susceptibility for the surrounding host rock. The ground magnetic survey coupled with the gravity confirms a potential target for further exploration as the findings are co-relatable with the presence of the known diamondiferous kimberlites in this region, which post-date the rocks of the Kaimur Group.Keywords: Kaimur, kimberlite, Euler 3D solution, magnetic
Procedia PDF Downloads 741589 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 511588 Magnetic Nanoparticles for Cancer Therapy
Authors: Sachinkumar Patil, Sonali Patil, Shitalkumar Patil
Abstract:
Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles.Keywords: magnetic nanoparticles, synthesis, characterization, cancer therapy, hyperthermia, application
Procedia PDF Downloads 6391587 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection
Procedia PDF Downloads 2271586 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 2711585 Investigation of the Litho-Structure of Ilesa Using High Resolution Aeromagnetic Data
Authors: Oladejo Olagoke Peter, Adagunodo T. A., Ogunkoya C. O.
Abstract:
The research investigated the arrangement of some geological features under Ilesa employing aeromagnetic data. The obtained data was subjected to various data filtering and processing techniques, which are Total Horizontal Derivative (THD), Depth Continuation and Analytical Signal Amplitude using Geosoft Oasis Montaj 6.4.2 software. The Reduced to the Equator –Total Magnetic Intensity (TRE-TMI) outcomes reveal significant magnetic anomalies, with high magnitude (55.1 to 155 nT) predominantly at the Northwest half of the area. Intermediate magnetic susceptibility, ranging between 6.0 to 55.1 nT, dominates the eastern part, separated by depressions and uplifts. The southern part of the area exhibits a magnetic field of low intensity, ranging from -76.6 to 6.0 nT. The lineaments exhibit varying lengths ranging from 2.5 and 16.0 km. Analyzing the Rose Diagram and the analytical signal amplitude indicates structural styles mainly of E-W and NE-SW orientations, particularly evident in the western, SW and NE regions with an amplitude of 0.0318nT/m. The identified faults in the area demonstrate orientations of NNW-SSE, NNE-SSW and WNW-ESE, situated at depths ranging from 500 to 750 m. Considering the divergence magnetic susceptibility, structural style or orientation of the lineaments, identified fault and their depth, these lithological features could serve as a valuable foundation for assessing ground motion, particularly in the presence of sufficient seismic energy.Keywords: lineament, aeromagnetic, anomaly, fault, magnetic
Procedia PDF Downloads 731584 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3681583 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 811582 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties
Procedia PDF Downloads 6921581 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections
Authors: Liu Lin Xin
Abstract:
With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs
Procedia PDF Downloads 311580 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan
Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed
Abstract:
The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.Keywords: ERT, magnetic, mineralization, Red Sea, Sudan
Procedia PDF Downloads 4281579 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 201578 Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field
Authors: P. W. Chen, C. T. Chang, Y. Peng, J. Y. Wu, D. J. Jan, Md. Manirul Ali
Abstract:
In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength.Keywords: cathode spot, vacuum arc discharge, oblique magnetic field, tangential magnetic field
Procedia PDF Downloads 3231577 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves
Authors: Angel Pérez Sánchez
Abstract:
Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves
Procedia PDF Downloads 891576 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 281575 Geomagnetic Jerks Observed in Geomagnetic Observatory Data Over Southern Africa Between 2017 and 2023
Authors: Sanele Lionel Khanyile, Emmanuel Nahayo
Abstract:
Geomagnetic jerks are jumps observed in the second derivative of the main magnetic field that occurs on annual to decadal timescales. Understanding these jerks is crucial as they provide valuable insights into the complex dynamics of the Earth’s outer liquid core. In this study, we investigate the occurrence of geomagnetic jerks in geomagnetic observatory data collected at southern African magnetic observatories, Hermanus (HER), Tsumeb (TSU), Hartebeesthoek (HBK) and Keetmanshoop (KMH) between 2017 and 2023. The observatory data was processed and analyzed by retaining quiet night-time data recorded during quiet geomagnetic activities with the help of Kp, Dst, and ring current RC indices. Results confirm the occurrence of the 2019-2020 geomagnetic jerk in the region and identify the recent 2021 jerk detected with V-shaped secular variation changes in X and Z components at all four observatories. The highest estimated 2021 jerk secular acceleration amplitudes in X and Z components were found at HBK, 12.7 nT/year² and 19. 1 nT/year², respectively. Notably, the global CHAOS-7 model aptly identifies this 2021 jerk in the Z component at all magnetic observatories in the region.Keywords: geomagnetic jerks, secular variation, magnetic observatory data, South Atlantic Anomaly
Procedia PDF Downloads 721574 Analysis of Ionosphere Anomaly Before Great Earthquake in Java on 2009 Using GPS Tec Data
Authors: Aldilla Damayanti Purnama Ratri, Hendri Subakti, Buldan Muslim
Abstract:
Ionosphere’s anomalies as an effect of earthquake activity is a phenomenon that is now being studied in seismo-ionospheric coupling. Generally, variation in the ionosphere caused by earthquake activity is weaker than the interference generated by different source, such as geomagnetic storms. However, disturbances of geomagnetic storms show a more global behavior, while the seismo-ionospheric anomalies occur only locally in the area which is largely determined by magnitude of the earthquake. It show that the earthquake activity is unique and because of its uniqueness it has been much research done thus expected to give clues as early warning before earthquake. One of the research that has been developed at this time is the approach of seismo-ionospheric-coupling. This study related the state in the lithosphere-atmosphere and ionosphere before and when earthquake occur. This paper choose the total electron content in a vertical (VTEC) in the ionosphere as a parameter. Total Electron Content (TEC) is defined as the amount of electron in vertical column (cylinder) with cross-section of 1m2 along GPS signal trajectory in ionosphere at around 350 km of height. Based on the analysis of data obtained from the LAPAN agency to identify abnormal signals by statistical methods, obtained that there are an anomaly in the ionosphere is characterized by decreasing of electron content of the ionosphere at 1 TECU before the earthquake occurred. Decreasing of VTEC is not associated with magnetic storm that is indicated as an earthquake precursor. This is supported by the Dst index showed no magnetic interference.Keywords: earthquake, DST Index, ionosphere, seismoionospheric coupling, VTEC
Procedia PDF Downloads 5851573 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1191572 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 1981571 A Geophysical Study for Delineating the Subsurface Minerals at El Qusier Area, Central Eastern Desert, Egypt
Authors: Ahmed Khalil, Elhamy Tarabees, Svetlana Kovacikova
Abstract:
The Red Sea Mountains have been famous for their ore deposits since ancient times. Also, petrographic analysis and previous potential field surveys indicated large unexplored accumulations of ore minerals in the area. Therefore, the main goal of the presented study is to contribute to the discovery of hitherto unknown ore mineral deposits in the Red Sea region. To achieve this goal, we used two geophysical techniques: land magnetic survey and magnetotelluric data. A high-resolution land magnetic survey has been acquired using two proton magnetometers, one instrument used as a base station for the diurnal correction and the other used to measure the magnetic field along the study area. Two hundred eighty land magnetic stations were measured over a mesh-like area with a 500m spacing interval. The necessary reductions concerning daily variation, regional gradient and time observation were applied. Then, the total intensity anomaly map was constructed and transformed into the reduced magnetic pole (RTP). The magnetic interpretation was carried out using the analytical signal as well as regional–residual separation is carried out using the power spectrum. Also, the tilt derivative method (TDR) technique is applied to delineate the structure and hidden anomalies. Data analysis has been performed using trend analysis and Euler deconvolution. The results indicate that magnetic contacts are not the dominant geological feature of the study area. The magnetotleruric survey consisted of two profiles with a total of 8 broadband measurement points with a duration of about 24 hours crossing a wadi um Gheig approximately 50 km south of El Quseir. Collected data have been inverted to the electrical resistivity model using the 3D modular 3D inversion technique ModEM. The model revealed a non-conductive body in its central part, probably corresponding to a dolerite dyke, with which possible ore mineralization could be related.Keywords: magnetic survey, magnetotelluric, mineralization, 3d modeling
Procedia PDF Downloads 261570 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1171569 Magnetic and Optical Properties of GaFeMnN
Authors: A.Abbad, H.A.Bentounes, W.Benstaali
Abstract:
The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties.Keywords: FP-LAPW, LSDA, magnetic moment, reflectivity
Procedia PDF Downloads 5241568 First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC
Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif
Abstract:
The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%).Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide
Procedia PDF Downloads 2901567 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 93