Search results for: cardio data analysis
39385 Output Voltage Analysis of CMOS Colpitts Oscillator with Short Channel Device
Authors: Maryam Ebrahimpour, Amir Ebrahimi
Abstract:
This paper presents the steady-state amplitude analysis of MOS Colpitts oscillator with short channel device. The proposed method is based on a large signal analysis and the nonlinear differential equations that govern the oscillator circuit behaviour. Also, the short channel effects are considered in the proposed analysis and analytical equations for finding the steady-state oscillation amplitude are derived. The output voltage calculated from this analysis is in excellent agreement with simulations for a wide range of circuit parameters.Keywords: colpitts oscillator, CMOS, electronics, circuits
Procedia PDF Downloads 35139384 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 20139383 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 11439382 Instructors Willingness, Self-Efficacy Beliefs, Attitudes and Knowledge about Provisions of Instructional Accommodations for Students with Disabilities: The Case Selected Universities in Ethiopia
Authors: Abdreheman Seid Abdella
Abstract:
This study examined instructors willingness, self-efficacy beliefs, attitudes and knowledge about provisions of instructional accommodations for students with disabilities in universities. Major concepts used in this study operationally defined and some models of disability were reviewed. Questionnaires were distributed to a total of 181 instructors from four universities and quantitative data was generated. Then to analyze the data, appropriate methods of data analysis were employed. The result indicated that on average instructors had positive willingness, strong self-efficacy beliefs and positive attitudes towards providing instructional accommodations. In addition, the result showed that the majority of participants had moderate level of knowledge about provision of instructional accommodations. Concerning the relationship between instructors background variables and dependent variables, the result revealed that location of university and awareness raising training about Inclusive Education showed statistically significant relationship with all dependent variables (willingness, self-efficacy beliefs, attitudes and knowledge). On the other hand, gender and college/faculty did not show a statistically significant relationship. In addition, it was found that among the inter-correlation of dependent variables, the correlation between attitudes and willingness to provide accommodations was the strongest. Furthermore, using multiple linear regression analysis, this study also indicated that predictor variables like self-efficacy beliefs, attitudes, knowledge and teaching methodology training made statistically significant contribution to predicting the criterion willingness. Predictor variables like willingness and attitudes made statistically significant contribution to predicting self-efficacy beliefs. Predictor variables like willingness, Special Needs Education course and self-efficacy beliefs made statistically significant contribution to predict attitudes. Predictor variables like Special Needs Education courses, the location of university and willingness made statistically significant contribution to predicting knowledge. Finally, using exploratory factor analysis, this study showed that there were four components or factors each that represent the underlying constructs of willingness and self-efficacy beliefs to provide instructional accommodations items, five components for attitudes towards providing accommodations items and three components represent the underlying constructs for knowledge about provisions of instructional accommodations items. Based on the findings, recommendations were made for improving the situation of instructional accommodations in Ethiopian universities.Keywords: willingness, self-efficacy belief, attitude, knowledge
Procedia PDF Downloads 27039381 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study
Authors: Mohamed H. Khalil
Abstract:
Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.Keywords: GIS Web-Based, base-map, water network, decision support system
Procedia PDF Downloads 9639380 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics
Authors: Varun K, Pramod B. Balareddy
Abstract:
Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient
Procedia PDF Downloads 25739379 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.Keywords: experimental design, octane, speed of sound, toluene
Procedia PDF Downloads 27639378 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I
Authors: Khaled R. Khater
Abstract:
The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D
Procedia PDF Downloads 10739377 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 33839376 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk
Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni
Abstract:
Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.Keywords: climate change, health risk, new technological system
Procedia PDF Downloads 86839375 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 22539374 A Secular Advent: A Video-Ethnographic Study of the Preparations for Christmas in Swedish Preschools
Authors: Tunde Puskas, Anita Andersson
Abstract:
In Swedish early childhood education research, the issues related to religious identifications and practices have often been marginalized or relegated either to the realm of diversity and multiculturalism or to the realm of national traditions. This paper is part of a research project about whether religion is considered as part of Swedish cultural heritage in Swedish preschools. Our aim in this paper is to explore how a Swedish preschool balance between keeping the education non-confessional and at the same time introducing the traditions associated with advent and Christmas. Christmas was chosen because of the religious background of the holiday and because it is a tradition widely celebrated in Swedish preschools. In Swedish education system, the concept of freedom of religion is understood in the sense that education is declared to be non-confessional. Nevertheless, as the major state holidays in Sweden are tied to Lutheran Christian traditions, and according to the curriculum preschool educators, are given the task to pass on a cultural heritage, defined in terms of values, traditions, history, language, and knowledge, it is the preschool teams or individual preschool teachers who determine whether and to what extent religious considerations are/ought to be seen as part of the cultural heritage the preschool passes on. The data consists of ten video taped observations from two preschools. The video data was transcribed and the transcripts were thereafter analysed through content analysis. In the analysis, we draw on the concept of banal religiosity that has helped us to draw attention to the workings of religious considerations that are so familiar that they rarely are noticed as religious and on Ninian Smart’s theory on the dimensions of religion. The analysis shows that what the adults actually do with religion fulfils six of seven dimensions common to religious traditions as outlined by Smart. At the same time, Christmas is performed as a lived tradition within which the commercial and religious rituals intersect and result in a banal, national religiosity.Keywords: secular advent, banal religiosity, dimensions of religion, rites
Procedia PDF Downloads 18939373 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease
Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah
Abstract:
Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor
Procedia PDF Downloads 24439372 Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall
Authors: C. J. W. Habets, D. J. Peters, J. G. de Gijt, A. V. Metrikine, S. N. Jonkman
Abstract:
Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-displacement and finite element analysis are employed, calibrated with an experimental reference case that considers a typical anchored sheet pile wall. A reduction factor that accounts for deformation behaviour is determined for pseudo-static analysis. A model to apply traditional permanent displacement analysis on anchored sheet pile walls is proposed. Dynamic analysis is successfully carried out. From the research it is concluded that PBD evaluation can effectively be used for seismic analysis and design of this type of structure.Keywords: anchored sheet pile quay wall, simplified dynamic analysis, performance-based design, pseudo-static analysis
Procedia PDF Downloads 37939371 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis
Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos
Abstract:
Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis
Procedia PDF Downloads 14039370 Analysis of Oral and Maxillofacial Histopathology Service in Tertiary Center in Oman in the Past 13 Years
Authors: Sabreen Al Shamli, Abdul Rahman Al azure
Abstract:
Microscopic examination by histopathology is the gold standard for diagnosing many oral and maxillofacial pathologies. Current clinical guidelines and medicolegal regulations recommend the utilization of histopathology services for confirming pathologies being treated. The goal of this study was to determine the prevalence and distribution of oral and maxillofacial biopsies that had been histopathologically diagnosed at Anahdha Hospital (ANH). A total of 512 biopsies randomly selected from a ground total of 3310 biopsies, which were submitted for oral and maxillofacial histopathological specimens, were analyzed at Nahdha Hospital in Oman between January 2010 and December 2022. Data collected retrospectively selected from all case notes of patients who had oral histopathology examinations performed as part of their treatment. Data collected from the Shifa system was transferred to Microsoft Excel and analyzed using SPSS. Research ethics approval was obtained from the research committee of the hospital. This study provides background information on oral histopathology prevalence that could be helpful in future research in Oman. The findings of the present study are in agreement with the reported data from other investigations, even when it is taken into account how difficult it is to compare prevalence rates from different studies.Keywords: oral biopsy, maxillofacial histopathology, oral disease, maxillofacial specimens
Procedia PDF Downloads 7539369 Late Payment Issues Faced by Subcontractors in the Malaysian Construction Industry
Authors: Nur Emma Mustaffa, Hii Ping Ping
Abstract:
Late payment is a common issue in the construction industry and the subcontractors are not spared from it. This study has been carried out with the objectives to identify the implications of late payment issues toward the subcontractors and the strategies adopted by them to overcome the late payment issues. In terms of the strategies which can be adopted in overcoming the late payment, the subcontractors may suspend or slow down the construction process, making periodic follow up with the client, demand the rights to interest on late payment or the issuance of a promissory note by the client. The focus of the study is primarily on Grade 4 to Grade 7 contractors in Johor Bahru, Malaysia who carried out subcontracting works and registered under Construction Industry Development Board (CIDB). Employing survey as the main research method for data collection, the analysis would therefore mainly be adopting Likert Scale Analysis, Ranking Analysis and Frequency Distribution Analysis. This research showed the main implication of late payment issues towards subcontractors is created financial hardship to them. Besides, the most effective strategy adopted by the subcontractors to overcome the late payment issues is follow-up with client using formal procedure. From the findings, most of the subcontractors had low level of experiences and frequency in the adoption of Construction Industry Payment and Adjudication Act (CIPAA) 2012 to solve the payment disputes in the construction industry. In a nutshell, it is hoped that these findings will become guidance to the subcontractors to overcome the late payment issues in their future projects.Keywords: subcontractors, implications, strategies, CIPAA 2012, payment
Procedia PDF Downloads 17439368 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines
Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.
Abstract:
The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy
Procedia PDF Downloads 14639367 The Relationship between Psychological Capital and Mental Health in Economically Disadvantaged Youth: The Mediating Role of Family Cohesion
Authors: Chang Li-Yu
Abstract:
Aims: This study investigates the impact of psychological capital on the mental health of economically disadvantaged youth and examines whether family cohesion acts as a mediating variable between psychological capital and mental health. Methods: The sample for the study was drawn from the "Taiwan Poverty Children's Database: Survey on the Living Trends of Disadvantaged Children and Youth." The data analysis methods included descriptive statistics, confirmatory factor analysis, and structural equation modeling. Results: The results indicated that both psychological capital and family cohesion can significantly negatively predict mental health, with psychological capital significantly positively predicting family cohesion. The mediation effect analysis revealed that family cohesion fully mediates the relationship between psychological capital and mental health, meaning that psychological capital influences mental health through family cohesion. Recommendations: Based on these findings, the study concretely discusses the significance of psychological capital and family cohesion for the mental health of economically disadvantaged youth and offers suggestions for psychological counseling, therapy, and future research.Keywords: psychological capital, mental health, economically disadvantaged youth, family cohesion
Procedia PDF Downloads 6339366 Landslide Hazard Zonation Using Satellite Remote Sensing and GIS Technology
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
Landslide is the major geo-environmental problem of Himalaya because of high ridges, steep slopes, deep valleys, and complex system of streams. They are mainly triggered by rainfall and earthquake and causing severe damage to life and property. In Uttarakhand, the Tehri reservoir rim area, which is situated in the lesser Himalaya of Garhwal hills, was selected for landslide hazard zonation (LHZ). The study utilized different types of data, including geological maps, topographic maps from the survey of India, Landsat 8, and Cartosat DEM data. This paper presents the use of a weighted overlay method in LHZ using fourteen causative factors. The various data layers generated and co-registered were slope, aspect, relative relief, soil cover, intensity of rainfall, seismic ground shaking, seismic amplification at surface level, lithology, land use/land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), stream power index (SPI), drainage buffer and reservoir buffer. Seismic analysis is performed using peak horizontal acceleration (PHA) intensity and amplification factors in the evaluation of the landslide hazard index (LHI). Several digital image processing techniques such as topographic correction, NDVI, and supervised classification were widely used in the process of terrain factor extraction. Lithological features, LULC, drainage pattern, lineaments, and structural features are extracted using digital image processing techniques. Colour, tones, topography, and stream drainage pattern from the imageries are used to analyse geological features. Slope map, aspect map, relative relief are created by using Cartosat DEM data. DEM data is also used for the detailed drainage analysis, which includes TWI, SPI, drainage buffer, and reservoir buffer. In the weighted overlay method, the comparative importance of several causative factors obtained from experience. In this method, after multiplying the influence factor with the corresponding rating of a particular class, it is reclassified, and the LHZ map is prepared. Further, based on the land-use map developed from remote sensing images, a landslide vulnerability study for the study area is carried out and presented in this paper.Keywords: weighted overlay method, GIS, landslide hazard zonation, remote sensing
Procedia PDF Downloads 13339365 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 27239364 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 8239363 Fault Study and Reliability Analysis of Rotative Machine
Authors: Guang Yang, Zhiwei Bai, Bo Sun
Abstract:
This paper analyzes the influence of failure mode and harmfulness of rotative machine according to FMECA (Failure Mode, Effects, and Criticality Analysis) method, and finds out the weak links that affect the reliability of this equipment. Also in this paper, fault tree analysis software is used for quantitative and qualitative analysis, pointing out the main factors of failure of this equipment. Based on the experimental results, this paper puts forward corresponding measures for prevention and improvement, and fundamentally improves the inherent reliability of this rotative machine, providing the basis for the formulation of technical conditions for the safe operation of industrial applications.Keywords: rotative machine, reliability test, fault tree analysis, FMECA
Procedia PDF Downloads 15439362 A Development Model of Factors Affecting Decision Making to Select Successor in Family Business of Thailand
Authors: Polvasut Mahaiamsiri, Piraphong Foosiri
Abstract:
The purpose of this research is to explore the model of factors affecting decision making to select successor in family business of Thailand. A Structural Equation Model (SEM) was created from relevant theories and researches. Consequently, examine and analyse, the causal relation factors of Succession Plan, Recruitment Process and Strategic Planning, whether they have direct or indirect effects on Decision Making to Select Successor in family business. Units of analysis are selected from the family business, totalling 300 sampling. Population sampling is current owners or CEO from the percentage of six district areas in Thailand with multi-stage sampling. A set of questionnaires is used to collect data. An analysis of structural equation modelling (SEM) technique using AMOS 21 program is conducted to test the hypotheses and confirmatory factor analysis is performed and shows that these variables can be tested. The finding of this study revealed that these factors are separate constructs that combine to determine decision making to select successors.Keywords: succession plan, family business, recruitment process, strategic planning, decision making to select successor
Procedia PDF Downloads 20839361 Load Flow Analysis of 5-IEEE Bus Test System Using Matlab
Abstract:
A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB.Keywords: power flow analysis, Newton Raphson polar coordinates method
Procedia PDF Downloads 60339360 Reasons to Redesign: Teacher Education for a Brighter Tomorrow
Authors: Deborah L. Smith
Abstract:
To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.Keywords: DEI, field experiences, program redesign, teacher preparation
Procedia PDF Downloads 17139359 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning
Authors: Jiahao Tian, Michael D. Porter
Abstract:
Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation
Procedia PDF Downloads 6639358 Developing Open-Air Museum: The Heritage Conservation Effort, Oriented to Geotourism Concept and Education
Authors: Rinaldi Ikhram, R. A. Julia Satriani
Abstract:
The discovery of historical objects in Indonesia, especially in the area around Bandung and Priangan zone in general, have been inventorized and recorded by Dutch geologists during the colonial time. Among artefacts such as axes made of chalcedony and quartzite; arrowheads, knives, shrivel, and drill bit all made from obsidian; grindstones, even bracelet from stones. Ceramic mold for smelting bronze or iron were also found. The abundance of artefacts inspired DR. W. Docters van Leeuwen and his colleagues to initiate the establishment of Sunda Open-air Museum "Soenda Openlucht Museum" in 1917, located in the hills of North Bandung area, the site of pre-historic settlements that needs conservation. Unfortunately, this plan was not implemented because shortly after, World War II occurred. The efforts of heritage conservation is one of our responsibilities as a geologist today. Open-air Museum may be one of the solutions of heritage conservation for historic sites around the world. In this paper, the study of the development of Open-air Museum will be focused on the area of Dago, North Bandung. Method used is data analysis of field surveys, and data analysis of the remaining artefacts stored at both the National Museum in Jakarta, and the Bandung Museum of Geology. The museum is based on Geotourism and further research on pre-historic culture, while its purpose is to give people a common interest and to motivate them to participate in the research and conservation of pre-historic relics. This paper will describe more details about the concept, form, and management of the geopark and the Open-air Museum within.Keywords: geoparks, heritage conservation, open-air museum, sustainable tourism
Procedia PDF Downloads 34539357 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 43739356 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 374