Search results for: graph convolutional networks
641 Choosing the Lesser Evil: Tribal Alignment Formation in Civil Wars
Authors: Busra Nur Ozguler Aktel
Abstract:
This research aims to understand the factors that affect the ways in which tribes perceive and respond to violent conflicts in fragile states, given that tribes are essential stakeholders in many conflict-ridden fragile states, whether Afghanistan, Iraq, Syria, Libya, Somalia, Nigeria, or Yemen. It explores the primary questions of why some tribes align with extremist groups while others align with states during civil wars and why some tribes switch alignments. It argues that tribes form and switch alignments based on their perception of threats to their traditional tribal structure (internal dynamics) and clientelist relationships (external dynamics). Put differently; threat perceptions lead them to choose either the state or extremist groups that will more likely secure their traditional structure and patronage networks. This study focuses on Iraqi tribes as a case study. It builds a theory of tribal alignment formation based on ethnographic fieldwork in the Middle East, with a particular focus on Iraqi Sunni tribes living in the Kurdish region of Iraq and Jordan. As a result of the interviews with tribal leaders and members, local journalists, researchers, and politicians, it concludes that complex (re)alignments of tribes can determine the course and outcome of the conflicts, either mitigating or escalating violence. This study contributes to the larger body of conflict management and peacebuilding literature by introducing tribes as non-state actors and exploring their interactions with other actors in civil wars.Keywords: civil wars, tribes, alignment formation, side-switching, Iraq
Procedia PDF Downloads 88640 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 29639 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 481638 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 144637 Social Distancing as a Population Game in Networked Social Environments
Authors: Zhijun Wu
Abstract:
While social living is considered to be an indispensable part of human life in today's ever-connected world, social distancing has recently received much public attention on its importance since the outbreak of the coronavirus pandemic. In fact, social distancing has long been practiced in nature among solitary species and has been taken by humans as an effective way of stopping or slowing down the spread of infectious diseases. A social distancing problem is considered for how a population, when in the world with a network of social sites, decides to visit or stay at some sites while avoiding or closing down some others so that the social contacts across the network can be minimized. The problem is modeled as a population game, where every individual tries to find some network sites to visit or stay so that he/she can minimize all his/her social contacts. In the end, an optimal strategy can be found for everyone when the game reaches an equilibrium. The paper shows that a large class of equilibrium strategies can be obtained by selecting a set of social sites that forms a so-called maximal r-regular subnetwork. The latter includes many well-studied network types, which are easy to identify or construct and can be completely disconnected (with r = 0) for the most-strict isolation or allow certain degrees of connectivity (with r > 0) for more flexible distancing. The equilibrium conditions of these strategies are derived. Their rigidity and flexibility are analyzed on different types of r-regular subnetworks. It is proved that the strategies supported by maximal 0-regular subnetworks are strictly rigid, while those by general maximal r-regular subnetworks with r > 0 are flexible, though some can be weakly rigid. The proposed model can also be extended to weighted networks when different contact values are assigned to different network sites.Keywords: social distancing, mitigation of spread of epidemics, populations games, networked social environments
Procedia PDF Downloads 135636 The Role of Information Technology in Supply Chain Management
Authors: V. Jagadeesh, K. Venkata Subbaiah, P. Govinda Rao
Abstract:
This paper explaining about the significance of information technology tools and software packages in supply chain management (SCM) in order to manage the entire supply chain. Managing materials flow and financial flow and information flow effectively and efficiently with the aid of information technology tools and packages in order to deliver right quantity with right quality of goods at right time by using right methods and technology. Information technology plays a vital role in streamlining the sales forecasting and demand planning and Inventory control and transportation in supply networks and finally deals with production planning and scheduling. It achieves the objectives by streamlining the business process and integrates within the enterprise and its extended enterprise. SCM starts with customer and it involves sequence of activities from customer, retailer, distributor, manufacturer and supplier within the supply chain framework. It is the process of integrating demand planning and supply network planning and production planning and control. Forecasting indicates the direction for planning raw materials in order to meet the production planning requirements. Inventory control and transportation planning allocate the optimal or economic order quantity by utilizing shortest possible routes to deliver the goods to the customer. Production planning and control utilize the optimal resources mix in order to meet the capacity requirement planning. The above operations can be achieved by using appropriate information technology tools and software packages for the supply chain management.Keywords: supply chain management, information technology, business process, extended enterprise
Procedia PDF Downloads 378635 A Survey of WhatsApp as a Tool for Instructor-Learner Dialogue, Learner-Content Dialogue, and Learner-Learner Dialogue
Authors: Ebrahim Panah, Muhammad Yasir Babar
Abstract:
Thanks to the development of online technology and social networks, people are able to communicate as well as learn. WhatsApp is a popular social network which is growingly gaining popularity. This app can be used for communication as well as education. It can be used for instructor-learner, learner-learner, and learner-content interactions; however, very little knowledge is available on these potentials of WhatsApp. The current study was undertaken to investigate university students’ perceptions of WhatsApp used as a tool for instructor-learner dialogue, learner-content dialogue, and learner-learner dialogue. The study adopted a survey approach and distributed the questionnaire developed by Google Forms to 54 (11 males and 43 females) university students. The obtained data were analyzed using SPSS version 20. The result of data analysis indicates that students have positive attitudes towards WhatsApp as a tool for Instructor-Learner Dialogue: it easy to reach the lecturer (4.07), the instructor gives me valuable feedback on my assignment (4.02), the instructor is supportive during course discussion and offers continuous support with the class (4.00). Learner-Content Dialogue: WhatsApp allows me to academically engage with lecturers anytime, anywhere (4.00), it helps to send graphics such as pictures or charts directly to the students (3.98), it also provides out of class, extra learning materials and homework (3.96), and Learner-Learner Dialogue: WhatsApp is a good tool for sharing knowledge with others (4.09), WhatsApp allows me to academically engage with peers anytime, anywhere (4.07), and we can interact with others through the use of group discussion (4.02). It was also found that there are significant positive correlations between students’ perceptions of Instructor-Learner Dialogue (ILD), Learner-Content Dialogue (LCD), Learner-Learner Dialogue (LLD) and WhatsApp Application in classroom. The findings of the study have implications for lectures, policy makers and curriculum developers.Keywords: instructor-learner dialogue, learners-contents dialogue, learner-learner dialogue, whatsapp application
Procedia PDF Downloads 161634 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric
Procedia PDF Downloads 420633 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques
Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara
Abstract:
In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN
Procedia PDF Downloads 81632 Behavioral Response of Dogs to Interior Environment: An Exploratory Study on Design Parameters for Designing Dog Boarding Centers in Indian Context
Authors: M. R. Akshaya, Veena Rao
Abstract:
Pet population in India is increasing phenomenally owing to the changes in urban lifestyle with increasing number of single professionals, single parents, delayed parenthood etc. The animal companionship as a means of reducing stress levels, deriving emotional support, and unconditional love provided by dogs are a few reasons attributed for increasing pet ownership. The consequence is the booming of the pet care products and dog care centers catering to the different requirements of rearing the pets. Dog care centers quite popular in tier 1 metros of India cater to the requirement of the dog owners providing space for the dogs in absence of the owner. However, it is often reported that the absence of the owner leads to destructive and exploratory behavior issues; the main being the anxiety disorders. In the above context, it becomes imperative for a designer to design dog boarding centers that help in reducing the separation anxiety in dogs keeping in mind the different interior design parameters. An exploratory research with focus group discussion is employed involving a group of dog owners, behaviorists, proprietors of day care as well as boarding centers, and veterinarians to understand their perception on the significance of different interior parameters of color, texture, ventilation, aroma therapy and acoustics as a means of reducing the stress levels in dogs sent to the boarding centers. The data collected is organized as thematic networks thus enabling the listing of the interior design parameters that needs to be considered in designing dog boarding centers.Keywords: behavioral response, design parameters, dog boarding centers, interior environment
Procedia PDF Downloads 205631 FRATSAN: A New Software for Fractal Analysis of Signals
Authors: Hamidreza Namazi
Abstract:
Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 469630 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers
Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole
Abstract:
Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing
Procedia PDF Downloads 133629 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 73628 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy
Authors: Haile F. Darge, Hsieh C. Tsai
Abstract:
The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel
Procedia PDF Downloads 135627 The Role of Moroccan Salafist Radicalism in Creating Threat to Spain’s Security
Authors: Stanislaw Kosmynka
Abstract:
Although the genesis of the activity of fighting salafist radicalism in Spain dates back to the 80’s, the development of extremism of this kind manifested itself only in the next decade. Its first permanently functioning structures in this country in the second half of 90’s of 20th century came from Algieria and Syria. At the same time it should be emphasized that this distinction is in many dimensions conventional, the more so because they consisted also of immigrants from other coutries of Islam, particularly from Morocco. The paper seeks to understand the radical salafist challenge for Spain in the context of some terrorist networks consisted of immigrants from Morocco. On the eve of the new millennium Moroccan jihadists played an increasingly important role. Although the activity of these groups had for many years mainly logistical and propaganda character, the bomb attack carried out on 11 March 2004 in Madrid constituted an expression of open forms of terrorism, directed against the authorities and society of Spain and reflected the narration of representatives of the trend of the global jihad. The people involved in carrying out that act of violence were to a large extent Moroccan immigrants; also in the following years among the cells of radicals in Spain Moroccans stood out many times. That is why the forms and directions of activity of these extremists in Spain, also after 11th March 2004 and in the actual context of the impact of Islamic State, are worth presenting. The paper is focused on threats to the security of Spain and the region and remains connected with the issues of mutual relations of the society of a host country with immigrant communities which to a large degree come from this part of Maghreb.Keywords: jihadi terrorism, Morocco, radical salafism, security, Spain, terrorist cells, threat
Procedia PDF Downloads 526626 Lost Maritime Culture in the Netherlands: Linking Material and Immaterial Datasets for a Modern Day Perception of the Late Medieval Maritime Cultural Landscape of the Zuiderzee Region
Authors: Y. T. van Popta
Abstract:
This paper focuses on the never thoroughly examined yet in native relevant late medieval maritime cultural landscape of the former Zuiderzee (A.D. 1170-1932) in the center part of the Netherlands. Especially the northeastern part of the region, nowadays known as the Noordoostpolder, testifies of the dynamic battle of the Dutch against the water. This highly dynamic maritime region developed from a lake district into a sea and eventually into a polder. By linking physical and cognitive datasets from the Noordoostpol-der region in a spatial environment, new information on a late medieval maritime culture is brought to light, giving the opportunity to: (i) create a modern day perception on the late medieval maritime cultural landscape of the region and (ii) to underline the value of interdisciplinary and spatial research in maritime archaeology in general. Since the large scale reclamations of the region (A.D. 1932-1968), many remains have been discovered of a drowned and eroded late medieval maritime culture, represented by lost islands, drowned settlements, cultivated lands, shipwrecks and socio-economic networks. Recent archaeological research has proved the existence of this late medieval maritime culture by the discovery of the remains of the drowned settlement Fenehuysen (Veenhuizen) and its surroundings. The fact that this settlement and its cultivated surroundings remained hidden for so long proves that a large part of the maritime cultural landscape is ‘invisible’ and can only be found by extensive interdisciplinary research.Keywords: drowned settlements, late middle ages, lost islands, maritime cultural landscape, the Netherlands
Procedia PDF Downloads 215625 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 450624 Re-Envisioning Modernity: Transformations of Postwar Suburban Landscapes
Authors: Shannon Clayton
Abstract:
In an effort to explore the potential transformation of North American postwar suburbs, this M.Arch thesis actively engages in the ongoing critique of modernism from the mid 20th century to the present. Contemporary urban design practice has emerged out of the reaction to orthodox modernism. Typically, new suburban development falls into one of two strategies; an attempt to replicate pre-war fabric that never existed, or a reliance on high-density to create instant urbanism. In both cases, the critical role of architecture has been grossly undervalued. Ironically, it is the denial of suburbia’s inherent modernity that has served to prevent genuine place-making. As history demonstrates, modernism is not antithetical to architecture and place. In the postwar years, a critical discussion emerged amongst architects, which sought to evolve modernism beyond functionalism. This was demonstrated through critical discussions on image, experience, and monumentality. As well as increased interest in civic space, and investigations into mat urbanism and the megastructure. The undercurrent within these explorations was a belief that the scale and complexity of modern development could become an opportunity to create urbanism, rather than squander it. This critical discourse has continued through architectural work in the Netherlands and Denmark since the early 1990s, where an emphasis on visual variety, human scale, and public interaction has been given high priority. This thesis applies principles from this ongoing dialogue, and identifies hidden potential within existing North American suburban networks. As a result, the project re-evaluates the legacy of the master plan from a contemporary perspective.Keywords: urbanism, modernism, suburbia, place-making
Procedia PDF Downloads 253623 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.Keywords: geospatial, web-based GIS, geohazard, warning system
Procedia PDF Downloads 409622 Can (E-)Mentoring Be a Tool for the Career of Future Translators?
Authors: Ana Sofia Saldanha
Abstract:
The answer is yes. Globalization is changing the translation world day after day, year after year. The need to know more about new technologies, clients, companies, project management and social networks is becoming more and more demanding and increasingly competitive. The great majority of the recently graduated Translators do not know where to go, what to do or even who to contact to start their careers in translation. It is well known that there are innumerous webinars, books, blogs and webpages with the so-called “tips do become a professional translator” indicating for example, what to do, what not to do, rates, how your resume should look like, etc. but are these pieces of advice coming from real translators? Translators who work daily with clients, who understand their demands, requests, questions? As far as today`s trends, the answer is no. Most of these pieces of advice are just theoretical and coming from “brilliant minds” who are more interested in spreading their word and winning “likes” to become, in some way, “important people in some area. Mentoring is, indeed, a highly important tool to help and guide new translators starting their career. An effective and well oriented Mentoring is a powerful way to orient these translators on how to create their resumes, where to send resumes, how to approach clients, how to answer emails and how to negotiate rates in an efficient way. Mentoring is a crucial tool and even some kind of “psychological trigger”, when properly delivered by professional and experienced translators, to help in the so aimed career development. The advice and orientation sessions which can bem 100% done online, using Skype for example, are almost a “weapon” to destroy the barriers created by opinions, by influences or even by universities. This new orientation trend is the future path for new translators and is the future of the Translation industry and professionals and Universities who must update their way of approaching the real translation world, therefore, minds and spirits need to be opened and engaged in this new trend of developing skills.Keywords: mentoring, orientation, professional follow-up, translation
Procedia PDF Downloads 116621 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 293620 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles
Authors: Emil F. Khisamutdinov
Abstract:
Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers
Procedia PDF Downloads 81619 Modeling of Virtual Power Plant
Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.
Abstract:
Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling
Procedia PDF Downloads 65618 Modelling the Effect of Psychological Capital on Climate Change Adaptation among Smallholders from South Africa
Authors: Unity Chipfupa, Aluwani Tagwi, Edilegnaw Wale
Abstract:
Climate change adaptation studies are challenged by a limited understanding of how non-cognitive factors such as psychological capital affect adaptation decisions of smallholder farmers. The concept of psychological capital has not been fully applied in the empirical literature on climate change adaptation strategies. Hence, the study was meant to assess how psychological capital endowment affects climate change adaptation among smallholder farmers. A multivariate probit regression model was estimated using data collected from 328 smallholder farmers in KwaZulu-Natal, South Africa. The findings indicate that, among other factors, self-confidence and hope or aspirations in farming influence climate change adaptation decisions of smallholders. The psychological capital theory proved to be comprehensive in identifying specific psychological dimensions associated with adaptation decisions. However, the non-alignment of approaches for measuring non-cognitive factors made it difficult to compare results among different studies. In conclusion, the study recommends the need for practical ways for enhancing smallholders’ endowment with key non-cognitive abilities. Researchers should develop and agree on a comprehensive framework for assessing non-cognitive factors critical for climate change adaptation. This will improve the use of positive psychology theories to advance the literature on climate change adaptation. Other key recommendations include targeted support for communities facing higher risks of climate change, improving smallholders’ ability to adapt, promotion of social networks and the inclusion of farming objectives as an important indicator in climate change adaptation research.Keywords: adaptive capacity, climate change adaptation, psychological capital, multivariate probit, non-cognitive factors.
Procedia PDF Downloads 151617 Translators as Agents: Jewish Translators and Zsolnay Publishing House’s Translational Culture in Pre-Anschluss Austria,1924-1938
Authors: Tatsiana Haiden
Abstract:
The role of the translator in the publishing process has been underestimated for centuries. Any translation is produced in a certain socio-political context by agents with different background, interests, and opinions, i.e., no translation is neutral. Any translation goes beyond the text; it is not only an interlingual transfer of signs but a social phenomenon. The case study shows how Jewish social networks influence publishing translations and aims to explain the unexpected success of the Jewish publishing house in pre-Anschluss Austria. The research shows that translators play a central role (‘Translator’s visibility’ - Pym, ‘Activist turn’ - Wolf, ‘Translator studies’ - Chesterman) in choosing what has to be translated and establishing communication between the author and the publisher. The concept of Translationskultur of Prunc is being historized and applied to the publishing house for the first time by analyzing business correspondence between the main actors of translation (publisher-translator-author). The translation studies project has become interdisciplinary –it encompasses sociology (concepts of Bourdieu’s ‘Field theory’ are used) and history. The historical research method Histoire croiseé is being used to avoid subjectivity and to introduce a new ‘translator-oriented’ vision in translation studies instead of the author-oriented one. In the course of the archival research, it was established that Jewish background plays an essential role in the destiny of the translators and the publishing house, so the Jewish studies have been added to the project. The study goes beyond the Austrian translational culture; it can be used as an example of dealing with publishing houses policies, publishing translations, and translator studies.Keywords: history of translation, Jewish studies, publishing translations, translation sociology, translator studies, translators as actors
Procedia PDF Downloads 158616 Culture of Primary Cortical Neurons on Hydrophobic Nanofibers Induces the Formation of Organoid-Like Structures
Authors: Nick Weir, Robert Stevens, Alan Hargreaves, Martin McGinnity, Chris Tinsley
Abstract:
Hydrophobic materials have previously demonstrated the ability to elevate cell-cell interactions and promote the formation of neural networks whilst aligned nanofibers demonstrate the ability to induce extensive neurite outgrowth in an aligned manner. Hydrophobic materials typically elicit an immune response upon implantation and thus materials used for implantation are typically hydrophilic. Poly-L-lactic acid (PLLA) is a hydrophobic, non-immunogenic, FDA approved material that can be electrospun to form aligned nanofibers. Primary rat cortical neurons cultured for 10 days on aligned PLLA nanofibers formed 3D cell clusters, approximately 800 microns in diameter. Neurites that extended from these clusters were highly aligned due to the alignment of the nanofibers they were cultured upon and fasciculation was also evident. Plasma treatment of the PLLA nanofibers prior to seeding of cells significantly reduced the hydrophobicity and abolished the cluster formation and neurite fasciculation, whilst reducing the extent and directionality of neurite outgrowth; it is proposed that hydrophobicity induces the changes to cellular behaviors. Aligned PLLA nanofibers induced the formation of a structure that mimics the grey-white matter compartmentalization that is observed in vivo and thus represents a step forward in generating organoids or biomaterial-based implants. Upon implantation into the brain, the biomaterial architectures described here may provide a useful platform for both brain repair and brain remodeling initiatives.Keywords: hydrophobicity, nanofibers, neurite fasciculation, neurite outgrowth, PLLA
Procedia PDF Downloads 161615 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India
Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan
Abstract:
The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.Keywords: data sharing, collaboration, public health research, chronic disease
Procedia PDF Downloads 451614 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation
Authors: S. Jalilzadeh, S. M. Mohseni Bonab
Abstract:
Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control
Procedia PDF Downloads 487613 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chua, diode, memristor, chaos
Procedia PDF Downloads 90612 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform
Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry
Abstract:
The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems
Procedia PDF Downloads 492