Search results for: decision model
19338 Development of Medical Intelligent Process Model Using Ontology Based Technique
Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu
Abstract:
An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.Keywords: ontology-based, model, database, OOADM, healthcare
Procedia PDF Downloads 7819337 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades
Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco
Abstract:
Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.Keywords: façade, MCDM, MIVES, sustainability
Procedia PDF Downloads 34519336 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey
Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff
Abstract:
This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction
Procedia PDF Downloads 16819335 Attachment and Decision-Making in Infertility
Authors: Anisa Luli, Alessandra Santona
Abstract:
Wanting a child and experiencing the impossibility to conceive is a painful condition that often is linked to infertility and often leads infertile individuals to experience psychological, relational and social problems. In this situation, infertile couples have to review their choices and take into consideration new ones. Few studies have focused on the decision-making style used by infertile individuals to solve their problem and on the factors that influences it. The aim of this paper is to define the style of decision-making used by infertile persons to give a solution to the “problem” and the predictive role of the attachment, of the representations of the relationship with parents in childhood and of the dyadic adjustment. The total sample is composed by 251 participants, divided in two groups: the experimental group composed by 114 participants, 62 males and 52 females, age between 25 and 59 years, and the control group composed by 137 participants, 65 males and 72 females, age between 22 and 49 years. The battery of instruments comprises: General Decision Making Style (GDMS), Experiences in Close Relationships Questionnaire Revised (ECR-R), Dyadic Adjustment Scale (DAS), Parental Bonding Instrument (PBI) and Symptom Checklist-90-R (SCL-90-R). The results from the analysis of the samples showed a prevalence of the rational decision-making style for both males and females, experimental and control group. There have been founded significant statistical relationships between the attachment scales, the representations of the parenting style, the dyadic adjustment and the decision-making styles. These results contribute to enrich the literature on the subject of decision-making in infertile people and show the relationship between the attachment and decision-making styles, confirming the few results in literature.Keywords: attachment, decision-making style, infertility, dyadic adjustment
Procedia PDF Downloads 57819334 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan
Authors: Feras Hanandeh, Majdi Shannag
Abstract:
This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.Keywords: data mining, classification, extracting rules, decision tree
Procedia PDF Downloads 41619333 Descriptive Analysis: New Media Influence on Decision Makers
Authors: Bashaiar Alsanaa
Abstract:
The process of decision making requires environment surveillance and public opinion monitoring, both of which can be attained through effective use of social media. This study aims to investigate the extent to which new media influence the decision making process by the Kuwaiti government. The research explores how unprecedented access to information as well as dynamic user-interaction made possible by new technologies play a significant role in all aspects of decision making whether on the end of the public or decision makers themselves. The research analyzes two case studies where public opinion was forceful on social media in order to explore how such media create interactive and liberal environments for individuals to participate in the process of taking action with regards to political, economic and social issues. The findings of this descriptive study indicate the overwhelming extent to which social media are being used in Kuwait to create new social reform by the government based on citizen interaction with current topics.Keywords: communication, descriptive, new media technologies, social media.
Procedia PDF Downloads 11819332 A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information
Abstract:
Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach.Keywords: belief function theory, incomplete information, multiple criteria analysis, PROMETHEE method
Procedia PDF Downloads 16619331 Consumer Behaviour Model for Apparel E-Tailers Using Structural Equation Modelling
Authors: Halima Akhtar, Abhijeet Chandra
Abstract:
The paper attempts to analyze the factors that influence the Consumer Behavior to purchase apparel through the internet. The intentions to buy apparels online were based on in terms of user style, orientation, size and reputation of the merchant, social influence, perceived information utility, perceived ease of use, perceived pleasure and attractiveness and perceived trust and risk. The basic framework used was Technology acceptance model to explain apparels acceptance. A survey was conducted to gather the data from 200 people. The measures and hypotheses were analyzed using Correlation testing and would be further validated by the Structural Equation Modelling. The implications of the findings for theory and practice could be used by marketers of online apparel websites. Based on the values obtained, we can conclude that the factors such as social influence, Perceived information utility, attractiveness and trust influence the decision for a user to buy apparels online. The major factors which are found to influence an online apparel buying decision are ease of use, attractiveness that a website can offer and the trust factor which a user shares with the website.Keywords: E-tailers, consumer behaviour, technology acceptance model, structural modelling
Procedia PDF Downloads 18519330 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection
Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew
Abstract:
The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.
Procedia PDF Downloads 4719329 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 10519328 The Acceptable Roles of Artificial Intelligence in the Judicial Reasoning Process
Authors: Sonia Anand Knowlton
Abstract:
There are some cases where we as a society feel deeply uncomfortable with the use of Artificial Intelligence (AI) tools in the judicial decision-making process, and justifiably so. A perfect example is COMPAS, an algorithmic model that predicts recidivism rates of offenders to assist in the determination of their bail conditions. COMPAS turned out to be extremely racist: it massively overpredicted recidivism rates of Black offenders and underpredicted recidivism rates of white offenders. At the same time, there are certain uses of AI in the judicial decision-making process that many would feel more comfortable with and even support. Take, for example, a “super-breathalyzer,” an (albeit imaginary) tool that uses AI to deliver highly detailed information about the subject of the breathalyzer test to the legal decision-makers analyzing their drunk-driving case. This article evaluates the point at which a judge’s use of AI tools begins to undermine the public’s trust in the administration of justice. It argues that the answer to this question depends on whether the AI tool is in a role in which it must perform a moral evaluation of a human being.Keywords: artificial intelligence, judicial reasoning, morality, technology, algorithm
Procedia PDF Downloads 8119327 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry
Authors: Ph. Fauquet-Alekhine
Abstract:
Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.Keywords: bias, expert, high risk industry, stress.
Procedia PDF Downloads 11219326 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 19819325 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters
Authors: Hecson Christian, Joel Macwan
Abstract:
Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.Keywords: GIS, AHP, MCDA, Geo-technical
Procedia PDF Downloads 14519324 Decision Making for Industrial Engineers: From Phenomenon to Value
Authors: Ali Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. In out current environment, the path from a phenomenon to value involves numerous people with expertise in various areas including domain knowledge of a field and the ability to make decisions within an operating environment that lead to value creation. We propose some skills that industrial engineering programs should focus on, and argue that an industrial engineer is a decision maker instead of a problem solver.Keywords: decision analysis, problem-solving, value creation, industrial engineering
Procedia PDF Downloads 37319323 Developing a Systems Dynamics Model for Security Management
Authors: Kuan-Chou Chen
Abstract:
This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions.Keywords: system thinking, information security systems, security management, simulation
Procedia PDF Downloads 42919322 Applying Fuzzy Analytic Hierarchy Process for Subcontractor Selection
Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi
Abstract:
Textile and clothing manufacturing industry is based largely on subcontracting system. Choosing the right subcontractor became a strategic decision that can affect the financial position of the company and even his market position. Subcontracting firms in Tunisia are lead to define an appropriate selection process which takes into account several quantitative and qualitative criteria. In this study, a methodology is proposed that includes a Fuzzy Analytic Hierarchy Process (AHP) in order to incorporate the ambiguities and uncertainties in qualitative decision. Best subcontractors for two Tunisian firms are determined based on model results.Keywords: AHP, subcontractor, multicriteria, selection
Procedia PDF Downloads 68819321 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model
Authors: Hung-Chi Chang
Abstract:
For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory
Procedia PDF Downloads 37619320 Determinants of Rural Household Effective Demand for Biogas Technology in Southern Ethiopia
Authors: Mesfin Nigussie
Abstract:
The objectives of the study were to identify factors affecting rural households’ willingness to install biogas plant and amount willingness to pay in order to examine determinants of effective demand for biogas technology. A multistage sampling technique was employed to select 120 respondents for the study. The binary probit regression model was employed to identify factors affecting rural households’ decision to install biogas technology. The probit model result revealed that household size, total household income, access to extension services related to biogas, access to credit service, proximity to water sources, perception of households about the quality of biogas, perception index about attributes of biogas, perception of households about installation cost of biogas and availability of energy source were statistically significant in determining household’s decision to install biogas. Tobit model was employed to examine determinants of rural household’s amount of willingness to pay. Based on the model result, age of the household head, total annual income of the household, access to extension service and availability of other energy source were significant variables that influence willingness to pay. Providing due considerations for extension services, availability of credit or subsidy, improving the quality of biogas technology design and minimizing cost of installation by using locally available materials are the main suggestions of this research that help to create effective demand for biogas technology.Keywords: biogas technology, effective demand, probit model, tobit model, willingnes to pay
Procedia PDF Downloads 14019319 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 52019318 Real-Time Classification of Marbles with Decision-Tree Method
Authors: K. S. Parlak, E. Turan
Abstract:
The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.Keywords: decision tree, feature extraction, k-means clustering, marble classification
Procedia PDF Downloads 38219317 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory
Procedia PDF Downloads 11719316 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 13519315 Review of Models of Consumer Behaviour and Influence of Emotions in the Decision Making
Authors: Mikel Alonso López
Abstract:
In order to begin the process of studying the task of making consumer decisions, the main decision models must be analyzed. The objective of this task is to see if there is a presence of emotions in those models, and analyze how authors that have created them consider their impact in consumer choices. In this paper, the most important models of consumer behavior are analysed. This review is useful to consider an unproblematic background knowledge in the literature. The order that has been established for this study is chronological.Keywords: consumer behaviour, emotions, decision making, consumer psychology
Procedia PDF Downloads 45119314 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 13319313 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 45519312 RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model
Authors: Jamil Ahmed
Abstract:
Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system.Keywords: authorization, access control model, role based access control, attribute based access control
Procedia PDF Downloads 15919311 Generation-Based Travel Decision Analysis in the Post-Pandemic Era
Authors: Hsuan Yu Lai, Hsuan Hsuan Chang
Abstract:
The consumer decision process steps through problems by weighing evidence, examining alternatives, and choosing a decision path. Currently, the COVID 19 made the tourism industry encounter a huge challenge and suffer the biggest amount of economic loss. It would be very important to reexamine the decision-making process model, especially after the pandemic, and consider the differences among different generations. The tourism industry has been significantly impacted by the global outbreak of COVID-19, but as the pandemic subsides, the sector is recovering. This study addresses the scarcity of research on travel decision-making patterns among generations in Taiwan. Specifically targeting individuals who frequently traveled abroad before the pandemic, the study explores differences in decision-making at different stages post-outbreak. So this study investigates differences in travel decision-making among individuals from different generations during/after the COVID-19 pandemic and examines the moderating effects of social media usage and individuals' perception of health risks. The study hypotheses are “there are significant differences in the decision-making process including travel motivation, information searching preferences, and criteria for decision-making” and that social-media usage and health-risk perception would moderate the results of the previous study hypothesis. The X, Y, and Z generations are defined and categorized based on a literature review. The survey collected data including their social-economic background, travel behaviors, motivations, considerations for destinations, travel information searching preferences, and decision-making criteria before/after the pandemic based on the reviews of previous studies. Data from 656 online questionnaires were collected between January to May 2023 and from Taiwanese travel consumers who used to travel at least one time abroad before Covid-19. SPSS is used to analyze the data with One-Way ANOVA and Two-Way ANOVA. The analysis includes demand perception, information gathering, alternative comparison, purchase behavior, and post-travel experience sharing. Social media influence and perception of health risks are examined as moderating factors. The findings show that before the pandemic, the Y Generation preferred natural environments, while the X Generation favored historical and cultural sites compared to the Z Generation. However, after the outbreak, the Z Generation displayed a significant preference for entertainment activities. This study contributes to understanding changes in travel decision-making patterns following COVID-19 and the influence of social media and health risks. The findings have practical implications for the tourism industry.Keywords: consumer decision-making, generation study, health risk perception, post-pandemic era, social media
Procedia PDF Downloads 6019310 Design and Application of a Model Eliciting Activity with Civil Engineering Students on Binomial Distribution to Solve a Decision Problem Based on Samples Data Involving Aspects of Randomness and Proportionality
Authors: Martha E. Aguiar-Barrera, Humberto Gutierrez-Pulido, Veronica Vargas-Alejo
Abstract:
Identifying and modeling random phenomena is a fundamental cognitive process to understand and transform reality. Recognizing situations governed by chance and giving them a scientific interpretation, without being carried away by beliefs or intuitions, is a basic training for citizens. Hence the importance of generating teaching-learning processes, supported using technology, paying attention to model creation rather than only executing mathematical calculations. In order to develop the student's knowledge about basic probability distributions and decision making; in this work a model eliciting activity (MEA) is reported. The intention was applying the Model and Modeling Perspective to design an activity related to civil engineering that would be understandable for students, while involving them in its solution. Furthermore, the activity should imply a decision-making challenge based on sample data, and the use of the computer should be considered. The activity was designed considering the six design principles for MEA proposed by Lesh and collaborators. These are model construction, reality, self-evaluation, model documentation, shareable and reusable, and prototype. The application and refinement of the activity was carried out during three school cycles in the Probability and Statistics class for Civil Engineering students at the University of Guadalajara. The analysis of the way in which the students sought to solve the activity was made using audio and video recordings, as well as with the individual and team reports of the students. The information obtained was categorized according to the activity phase (individual or team) and the category of analysis (sample, linearity, probability, distributions, mechanization, and decision-making). With the results obtained through the MEA, four obstacles have been identified to understand and apply the binomial distribution: the first one was the resistance of the student to move from the linear to the probabilistic model; the second one, the difficulty of visualizing (infering) the behavior of the population through the sample data; the third one, viewing the sample as an isolated event and not as part of a random process that must be viewed in the context of a probability distribution; and the fourth one, the difficulty of decision-making with the support of probabilistic calculations. These obstacles have also been identified in literature on the teaching of probability and statistics. Recognizing these concepts as obstacles to understanding probability distributions, and that these do not change after an intervention, allows for the modification of these interventions and the MEA. In such a way, the students may identify themselves the erroneous solutions when they carrying out the MEA. The MEA also showed to be democratic since several students who had little participation and low grades in the first units, improved their participation. Regarding the use of the computer, the RStudio software was useful in several tasks, for example in such as plotting the probability distributions and to exploring different sample sizes. In conclusion, with the models created to solve the MEA, the Civil Engineering students improved their probabilistic knowledge and understanding of fundamental concepts such as sample, population, and probability distribution.Keywords: linear model, models and modeling, probability, randomness, sample
Procedia PDF Downloads 11819309 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment
Procedia PDF Downloads 200