Search results for: bridge bearing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1624

Search results for: bridge bearing

1384 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.

Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis

Procedia PDF Downloads 160
1383 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 185
1382 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge

Authors: Heng Han, Zhilei Liang, Xiangong Zhou

Abstract:

In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.

Keywords: suspension bridge, main cable, temperature field, finite element

Procedia PDF Downloads 125
1381 Seismic Retrofit of Existing Bridge Foundations with Micropiles: 3D Finite Element Analysis

Authors: Mohanad Talal Alfach

Abstract:

This paper concerns the seismic behaviour of soil-piles-bridge reinforced by additional micropiles. The analysis carried out by three-dimensional finite element modelling using the FE software ABAQUS. The soil behaviour is assumed to be elastic with Rayleigh damping, while the micropiles are modeled as 3D elastic beam elements. The bridge deck slab was represented by a concentrated mass at the top of the pier column. The interaction between the added micropiles and the existing piles as well as the performance of the retrofitted soil-pile-superstructure system were investigated for different configurations of additional micropiles (number, position, inclination). Numerical simulation results show that additional micropiles constitute an efficient retrofitting solution. Analysis of results also shows that spacing between existing piles and retrofitting micropiles has little effect; while it is observed a substantial improvement (in case of weak piles/micropiles - soil interface) with reducing the inclination angle of retrofitting micropiles.

Keywords: retrofitting, seismic, finite element, micropiles, elastic

Procedia PDF Downloads 124
1380 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction

Procedia PDF Downloads 198
1379 Investigations Of The Service Life Of Different Material Configurations At Solid-lubricated Rolling Bearings

Authors: Bernd Sauer, Michel Werner, Stefan Emrich, Michael Kopnarski, Oliver Koch

Abstract:

Friction reduction is an important aspect in the context of sustainability and energy transition. Rolling bearings are therefore used in many applications in which components move relative to each other. Conventionally lubricated rolling bearings are used in a wide range of applications, but are not suitable under certain conditions. Conventional lubricants such as grease or oil cannot be used at very high or very low temperatures. In addition, these lubricants evaporate at very low ambient pressure, e.g. in a high vacuum environment, making the use of solid lubricated bearings unavoidable. With the use of solid-lubricated bearings, predicting the service life becomes more complex. While the end of the service life of bearings with conventional lubrication is mainly caused by the failure of the bearing components due to material fatigue, solid-lubricated bearings fail at the moment when the lubrication layer is worn and the rolling elements come into direct contact with the raceway during operation. In order to extend the service life of these bearings beyond the service life of the initial coating, the use of transfer lubrication is recommended, in which pockets or sacrificial cages are used in which the balls run and can thus absorb the lubricant, which is then available for lubrication in tribological contact. This contribution presents the results of wear and service life tests on solid-lubricated rolling bearings with sacrificial cage pockets. The cage of the bearing consists of a polyimide (PI) matrix with 15% molybdenum disulfide (MoS2) and serves as a lubrication depot alongside the silver-coated balls. The bearings are tested under high vacuum (pE < 10-2 Pa) at a temperature of 300 °C on a four-bearing test rig. First, investigations of the bearing system within the bearing service life are presented and the torque curve, the wear mass and surface analyses are discussed. With regard to wear, it can be seen that the bearing rings tend to increase in mass over the service life of the bearing, while the balls and the cage tend to lose mass. With regard to the elementary surface properties, the surfaces of the bearing rings and balls are examined in terms of the mass of the elements on them. Furthermore, service life investigations with different material pairings are presented, whereby the focus here is on the service life achieved in addition to the torque curve, wear development and surface analysis. It was shown that MoS2 in the cage leads to a longer service life, while a silver (Ag) coating on the balls has no positive influence on the service life and even appears to reduce it in combination with MoS2.

Keywords: ball bearings, molybdenum disulfide, solid lubricated bearings, solid lubrication mechanisms

Procedia PDF Downloads 19
1378 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 143
1377 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile

Procedia PDF Downloads 120
1376 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 87
1375 Development of a Value Evaluation Model of Highway Box-Girder Bridge

Authors: Hao Hsi Tseng

Abstract:

Taiwan’s infrastructure is gradually deteriorating, while resources for maintenance and replacement are increasingly limited, raising the urgent need for methods for maintaining existing infrastructure within constrained budgets. Infrastructure value evaluation is used to enhance the efficiency of infrastructure maintenance work, allowing administrators to quickly assess the maintenance needs and performance by observing variation in infrastructure value. This research establishes a value evaluation model for Taiwan’s highway box girder bridges. The operating mechanism and process of the model are illustrated in a practical case.

Keywords: box girder bridge, deterioration, infrastructure, maintenance, value evaluation

Procedia PDF Downloads 164
1374 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 334
1373 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 128
1372 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode

Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi

Abstract:

The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.

Keywords: active magnetic bearing, three pole AMB, hybrid control, Lyapunov function

Procedia PDF Downloads 314
1371 Numerical Analysis of Shallow Footing Rested on Geogrid Reinforced Sandy Soil

Authors: Seyed Abolhasan Naeini, Javad Shamsi Soosahab

Abstract:

The use of geosynthetic reinforcement within the footing soils is a very effective and useful method to avoid the construction of costly deep foundations. This study investigated the use of geosynthetics for soil improvement based on numerical modeling using FELA software. Pressure settlement behavior and bearing capacity ratio of foundation on geogrid reinforced sand is investigated and the effect of different parameters like as number of geogrid layers and vertical distance between elements in three different relative density soil is studied. The effects of geometrical parameters of reinforcement layers were studied for determining the optimal values to reach to maximum bearing capacity. The results indicated that the optimum range of the distance ratio between the reinforcement layers was achieved at 0.5 to 0.6 and after number of geogrid layers of 4, no significant effect on increasing the bearing capacity of footing on reinforced sandy with geogrid

Keywords: geogrid, reinforced sand, FELA software, distance ratio, number of geogrid layers

Procedia PDF Downloads 124
1370 In-situ and Laboratory Characterization of Fiji Lateritic Soils

Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal

Abstract:

Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.

Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.

Procedia PDF Downloads 166
1369 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils

Authors: Reza Ziaie Moayed, Saeideh Mohammadi

Abstract:

Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.

Keywords: bearing capacity, cement-treated soils, FLAC 3D, pile

Procedia PDF Downloads 100
1368 Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source

Authors: Temesgen Oljira, Olugbenga Akindeji Okunlola, Akinade Shadrach Olatunji, Dereje Ayalew, Bekele A. Bedada, Tasin Godlove Bafon

Abstract:

The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions.

Keywords: fluid source, gold mineralization, oxygen isotope, stable isotope, sulfur isotope

Procedia PDF Downloads 52
1367 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity

Authors: Mehrak Zargaryaeghoubi, Masood Hajali

Abstract:

Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.

Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element

Procedia PDF Downloads 352
1366 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 68
1365 Asymmetric Synthesis of β- and γ-Borylated Amines via Rh-Catalyzed Hydroboration of Allylamine Derivatives

Authors: Rukshani Wickrama-Arachchi, Tanner Metz, James M. Takacs

Abstract:

Amines bearing γ-stereocenters are important structural motifs found in many biologically active compounds. Regioselective Rh-catalyzed asymmetric hydroboration of acyclic allylamines is used to synthesize amines bearing chiral β- and γ-boronic esters yields up to 70% with 98:2 enantioselectivity. The major enantiomeric outcome can be independent of starting alkene geometry, revealing that cis/trans-isomerization of alkene can occur before hydroboration. Stereospecific transformations of the newly generated C-B bond illustrates the utility of these chiral synthons.

Keywords: allylamines, borylated amines, chiral amines, hydroboration, rhodium-catalysis

Procedia PDF Downloads 159
1364 Steel Concrete Composite Bridge: Modelling Approach and Analysis

Authors: Kaviyarasan D., Satish Kumar S. R.

Abstract:

India being vast in area and population with great scope of international business, roadways and railways network connection within the country is expected to have a big growth. There are numerous rail-cum-road bridges constructed across many major rivers in India and few are getting very old. So there is more possibility of repairing or coming up with such new bridges in India. Analysis and design of such bridges are practiced through conventional procedure and end up with heavy and uneconomical sections. Such heavy class steel bridges when subjected to high seismic shaking has more chance to fail by stability because the members are too much rigid and stocky rather than being flexible to dissipate the energy. This work is the collective study of the researches done in the truss bridge and steel concrete composite truss bridges presenting the method of analysis, tools for numerical and analytical modeling which evaluates its seismic behaviour and collapse mechanisms. To ascertain the inelastic and nonlinear behaviour of the structure, generally at research level static pushover analysis is adopted. Though the static pushover analysis is now extensively used for the framed steel and concrete buildings to study its lateral action behaviour, those findings by pushover analysis done for the buildings cannot directly be used for the bridges as such, because the bridges have completely a different performance requirement, behaviour and typology as compared to that of the buildings. Long span steel bridges are mostly the truss bridges. Truss bridges being formed by many members and connections, the failure of the system does not happen suddenly with single event or failure of one member. Failure usually initiates from one member and progresses gradually to the next member and so on when subjected to further loading. This kind of progressive collapse of the truss bridge structure is dependent on many factors, in which the live load distribution and span to length ratio are most significant. The ultimate collapse is anyhow by the buckling of the compression members only. For regular bridges, single step pushover analysis gives results closer to that of the non-linear dynamic analysis. But for a complicated bridge like heavy class steel bridge or the skewed bridges or complicated dynamic behaviour bridges, nonlinear analysis capturing the progressive yielding and collapse pattern is mandatory. With the knowledge of the postelastic behaviour of the bridge and advancements in the computational facility, the current level of analysis and design of bridges has moved to state of ascertaining the performance levels of the bridges based on the damage caused by seismic shaking. This is because the buildings performance levels deals much with the life safety and collapse prevention levels, whereas the bridges mostly deal with the extent damages and how quick it can be repaired with or without disturbing the traffic after a strong earthquake event. The paper would compile the wide spectrum of modeling to analysis of the steel concrete composite truss bridges in general.

Keywords: bridge engineering, performance based design of steel truss bridge, seismic design of composite bridge, steel-concrete composite bridge

Procedia PDF Downloads 161
1363 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 185
1362 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 329
1361 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo

Authors: Li Minghui, Min Shaorong, Zhang Jun

Abstract:

This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.

Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability

Procedia PDF Downloads 423
1360 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.

Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge

Procedia PDF Downloads 140
1359 Culture and Commodification: A Study of William Gibson's the Bridge Trilogy

Authors: Aruna Bhat

Abstract:

Culture can be placed within the social structure that embodies both the creation of social groups, and the manner in which they interact with each other. As many critics have pointed out, culture in the Postmodern context has often been considered a commodity, and indeed it shares many attributes with commercial products. Popular culture follows many patterns of behavior derived from Economics, from the simple principle of supply and demand, to the creation of marketable demographics which fit certain criterion. This trend is exemplary visible in contemporary fiction, especially in contemporary science fiction; Cyberpunk fiction in particular which is an off shoot of pure science fiction. William Gibson is one such author who in his works portrays such a scenario, and in his The Bridge Trilogy he adds another level of interpretation to this state of affairs, by describing a world that is centered on industrialization of a new kind – that focuses around data in the cyberspace. In this new world, data has become the most important commodity, and man has become nothing but a nodal point in a vast ocean of raw data resulting into commodification of each thing including Culture. This paper will attempt to study the presence of above mentioned elements in William Gibson’s The Bridge Trilogy. The theories applied will be Postmodernism and Cultural studies.

Keywords: culture, commodity, cyberpunk, data, postmodern

Procedia PDF Downloads 471
1358 Flexural Strengthening of Steel Beams Using Fiber Reinforced Polymers

Authors: Sally Hosny, Mona G. Ibrahim, N. K. Hassan

Abstract:

Fiber reinforced polymers (FRP) is one of the most environmentally method for strengthening and retrofitting steel structure buildings. The behaviour of flexural strengthened steel I-beams using FRP was investigated. The finite element (FE) models were developed using ANSYS® as verification cases to simulate the experimental behaviour of using FRP strips to flexure strengthen steel I-beam. Two experimental studies were selected for verification; first examined the effect of different thicknesses and modulus of elasticity while the second studied the effect of applying different carbon fiber reinforced polymers (CFRP) bond lengths. The proposed FE models were in good agreement with the experimental results in terms of failure modes, load bearing capacities and strain distribution on CFRP strips. The verified FE models can be utilized to conduct a parametric study where various widths (40, 50, 60, 70 and 80 mm), thickness (1.2, 2 and 4 mm) and lengths (1500, 1700 and 1800 mm) of CFRP were analyzed. The results presented clearly revealed that the load bearing capacity was significantly increased (+7%) when the width and thickness were increased. However, load bearing capacity was slightly affected using longer CFRP strips. Moreover, applying another glass fiber reinforced polymers (GFRP) of 1500 mm in length, 50 mm in width and thicknesses of 1.2, 2 and 4 mm were investigated. Load bearing capacity of strengthened I-beams using GFRP is less than CFRP by average 8%. Statistical analysis has been conducted using Minitab®.

Keywords: FRP, strengthened steel I-beams, flexural, FEM, ANSYS

Procedia PDF Downloads 246
1357 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis

Authors: Fahad Qureshi

Abstract:

This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.

Keywords: exhaust side bearing, Gas turbine, rubbing, vibration

Procedia PDF Downloads 152
1356 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 115
1355 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 40