Search results for: brand image fit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3142

Search results for: brand image fit

2902 A User Interface for Easiest Way Image Encryption with Chaos

Authors: D. López-Mancilla, J. M. Roblero-Villa

Abstract:

Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.

Keywords: image encryption, chaos, secure communications, user interface

Procedia PDF Downloads 489
2901 Active Contours for Image Segmentation Based on Complex Domain Approach

Authors: Sajid Hussain

Abstract:

The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.

Keywords: image segmentation, active contour, level set, Mumford and Shah model

Procedia PDF Downloads 113
2900 Structural Analysis of Kamaluddin Behzad's Works Based on Roland Barthes' Theory of Communication, 'Text and Image'

Authors: Mahsa Khani Oushani, Mohammad Kazem Hasanvand

Abstract:

Text and image have always been two important components in Iranian layout. The interactive connection between text and image has shaped the art of book design with multiple patterns. In this research, first the structure and visual elements in the research data were analyzed and then the position of the text element and the image element in relation to each other based on Roland Barthes theory on the three theories of text and image, were studied and analyzed and the results were compared, and interpreted. The purpose of this study is to investigate the pattern of text and image in the works of Kamaluddin Behzad based on three Roland Barthes communication theories, 1. Descriptive communication, 2. Reference communication, 3. Matched communication. The questions of this research are what is the relationship between text and image in Behzad's works? And how is it defined according to Roland Barthes theory? The method of this research has been done with a structuralist approach with a descriptive-analytical method in a library collection method. The information has been collected in the form of documents (library) and is a tool for collecting online databases. Findings show that the dominant element in Behzad's drawings is with the image and has created a reference relationship in the layout of the drawings, but in some cases it achieves a different relationship that despite the preference of the image on the page, the text is dispersed proportionally on the page and plays a more active role, played within the image. The text and the image support each other equally on the page; Roland Barthes equates this connection.

Keywords: text, image, Kamaluddin Behzad, Roland Barthes, communication theory

Procedia PDF Downloads 191
2899 Lossless Secret Image Sharing Based on Integer Discrete Cosine Transform

Authors: Li Li, Ahmed A. Abd El-Latif, Aya El-Fatyany, Mohamed Amin

Abstract:

This paper proposes a new secret image sharing method based on integer discrete cosine transform (IntDCT). It first transforms the original image into the frequency domain (DCT coefficients) using IntDCT, which are operated on each block with size 8*8. Then, it generates shares among each DCT coefficients in the same place of each block, that is, all the DC components are used to generate DC shares, the ith AC component in each block are utilized to generate ith AC shares, and so on. The DC and AC shares components with the same number are combined together to generate DCT shadows. Experimental results and analyses show that the proposed method can recover the original image lossless than those methods based on traditional DCT and is more sensitive to tiny change in both the coefficients and the content of the image.

Keywords: secret image sharing, integer DCT, lossless recovery, sensitivity

Procedia PDF Downloads 397
2898 New Approaches for the Handwritten Digit Image Features Extraction for Recognition

Authors: U. Ravi Babu, Mohd Mastan

Abstract:

The present paper proposes a novel approach for handwritten digit recognition system. The present paper extract digit image features based on distance measure and derives an algorithm to classify the digit images. The distance measure can be performing on the thinned image. Thinning is the one of the preprocessing technique in image processing. The present paper mainly concentrated on an extraction of features from digit image for effective recognition of the numeral. To find the effectiveness of the proposed method tested on MNIST database, CENPARMI, CEDAR, and newly collected data. The proposed method is implemented on more than one lakh digit images and it gets good comparative recognition results. The percentage of the recognition is achieved about 97.32%.

Keywords: handwritten digit recognition, distance measure, MNIST database, image features

Procedia PDF Downloads 461
2897 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: unsharp masking, blur image, sub-region gradient, image enhancement

Procedia PDF Downloads 214
2896 Cloud Shield: Model to Secure User Data While Using Content Delivery Network Services

Authors: Rachna Jain, Sushila Madan, Bindu Garg

Abstract:

Cloud computing is the key powerhouse in numerous organizations due to shifting of their data to the cloud environment. In recent years it has been observed that cloud-based-services are being used on large scale for content storage, distribution and processing. Various issues have been observed in cloud computing environment that need to be addressed. Security and privacy are found topmost concern area. In this paper, a novel security model is proposed to secure data by utilizing CDN services like image to icon conversion. CDN Service is a content delivery service which converts an image to icon, word to pdf & Latex to pdf etc. Presented model is used to convert an image into icon by keeping image secret. Here security of image is imparted so that image should be encrypted and decrypted by data owners only. It is also discussed in the paper that how server performs multiplication and selection on encrypted data without decryption. The data can be image file, word file, audio or video file. Moreover, the proposed model is capable enough to multiply images, encrypt them and send to a server application for conversion. Eventually, the prime objective is to encrypt an image and convert the encrypted image to image Icon by utilizing homomorphic encryption.

Keywords: cloud computing, user data security, homomorphic encryption, image multiplication, CDN service

Procedia PDF Downloads 332
2895 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 13
2894 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 78
2893 GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform

Authors: Md. Enamul Haque, Abdullah Al Kaisan, Mahmudur R. Saniat, Aminur Rahman

Abstract:

In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression.

Keywords: accelerated GPU, CUDA, parallel computing, fractal image compression

Procedia PDF Downloads 333
2892 Branding Good Corporate Governance: A Pathway to Strengthen Investors’ Perception and Brand Equity

Authors: Azaz Zaman, Imtiaz Uddin Chowdhury, Mohammad Shariful Islam

Abstract:

Corporate governance has become a crucial issue in both the business and academic world as a result of world-wide financial scandals and lack of trust in corporate practices. There is no doubt that in order to thrive and attain growth in the market, a company must earn the trust of its stakeholders by consistently delivering on its commitments. Directors of the companies thus comprehend the importance of upfront communication with relevant stakeholders to increase their confidence. The authors of this article argue that practicing good corporate governance is not enough in this highly competitive market place; corporate leaders need to market their good corporate governance practices in order to make the company more attractive to investors. This article also contends that the strength of corporate governance relies wholly upon the extent to which it is communicated simply, effectively and unceasingly to its stakeholders. The main objective of this study, therefore, is to explore the importance of branding good corporate governance in order to increase corporate brand equity, attract investors, and capture market share. A structured questionnaire comprising three sections and a total of 34 questions was prepared and surveyed by the authors among respondents residing in Bangladesh and who also have an academic and corporate background, to investigate the potential impact of branding good corporate governance in the market place. High mean values for individual questions and overall section depict that communicating and branding good corporate governance to the stakeholders will not only boost the investors’ confidence but also increase the corporate brand equity, yielding both profitable and sustainable business environment.

Keywords: brand equity, investors’ preference, good corporate governance, sustainable business environment

Procedia PDF Downloads 113
2891 A Technique for Image Segmentation Using K-Means Clustering Classification

Authors: Sadia Basar, Naila Habib, Awais Adnan

Abstract:

The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.

Keywords: clustering, image segmentation, K-means function, local and global minimum, region

Procedia PDF Downloads 372
2890 A Conceptual Framework to Study Cognitive-Affective Destination Images of Thailand among French Tourists

Authors: Ketwadee Madden

Abstract:

Product or service image is among the vital factors that predict individuals’ choice of buying a product or services, goes to a place or attached to a person. Similarly, in the context of tourism, the destination image is a very important factor to which tourist considers before making their tour destination decisions. In light of this, the objective of this study is to conceptually investigate among French tourists, the determinants of Thailand’s tourism destination image. For this objective to be achieved, prior studies were reviewed, leading to the development of conceptual framework highlighting the determinants of destination image. In addition, this study develops some hypotheses that are to be empirically investigated. Aside these, based on the conceptual findings, suggestions on how to motivate European tourists to chose Thailand as their preferred tourism destination were made.

Keywords: cognitive destination image, affective destination image, motivations, risk perception, word of mouth

Procedia PDF Downloads 139
2889 Performance Evaluation of Content Based Image Retrieval Using Indexed Views

Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris

Abstract:

Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.

Keywords: content based image retrieval (CBIR), indexed view, color, image retrieval, cross correlation

Procedia PDF Downloads 468
2888 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media

Authors: Kruti Dave

Abstract:

Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.

Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition

Procedia PDF Downloads 196
2887 Image Distortion Correction Method of 2-MHz Side Scan Sonar for Underwater Structure Inspection

Authors: Youngseok Kim, Chul Park, Jonghwa Yi, Sangsik Choi

Abstract:

The 2-MHz Side Scan SONAR (SSS) attached to the boat for inspection of underwater structures is affected by shaking. It is difficult to determine the exact scale of damage of structure. In this study, a motion sensor is attached to the inside of the 2-MHz SSS to get roll, pitch, and yaw direction data, and developed the image stabilization tool to correct the sonar image. We checked that reliable data can be obtained with an average error rate of 1.99% between the measured value and the actual distance through experiment. It is possible to get the accurate sonar data to inspect damage in underwater structure.

Keywords: image stabilization, motion sensor, safety inspection, sonar image, underwater structure

Procedia PDF Downloads 280
2886 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image

Authors: Lan Du, Yan Wang, Hui Dai

Abstract:

Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.

Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation

Procedia PDF Downloads 385
2885 Pre-Processing of Ultrasonography Image Quality Improvement in Cases of Cervical Cancer Using Image Enhancement

Authors: Retno Supriyanti, Teguh Budiono, Yogi Ramadhani, Haris B. Widodo, Arwita Mulyawati

Abstract:

Cervical cancer is the leading cause of mortality in cancer-related diseases. In this diagnosis doctors usually perform several tests to determine the presence of cervical cancer in a patient. However, these checks require support equipment to get the results in more detail. One is by using ultrasonography. However, for the developing countries most of the existing ultrasonography has a low resolution. The goal of this research is to obtain abnormalities on low-resolution ultrasound images especially for cervical cancer case. In this paper, we emphasize our work to use Image Enhancement for pre-processing image quality improvement. The result shows that pre-processing stage is promising to support further analysis.

Keywords: cervical cancer, mortality, low-resolution, image enhancement.

Procedia PDF Downloads 635
2884 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 172
2883 Image Captioning with Vision-Language Models

Authors: Promise Ekpo Osaine, Daniel Melesse

Abstract:

Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.

Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score

Procedia PDF Downloads 76
2882 Embedded Digital Image System

Authors: Dawei Li, Cheng Liu, Yiteng Liu

Abstract:

This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.

Keywords: ADV212, image system, JPEG2000, sounding rocket

Procedia PDF Downloads 420
2881 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 448
2880 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 129
2879 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 485
2878 Image Compression on Region of Interest Based on SPIHT Algorithm

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.

Keywords: Compression ratio, DWT, SPIHT, DCT

Procedia PDF Downloads 349
2877 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark

Procedia PDF Downloads 275
2876 Intangible Cultural Heritage as a Strategic Place Branding Tool

Authors: L. Ozoliņa

Abstract:

Place branding as a strategic marketing tool is applied in Latvia since 2000. The main objective of the study is to find unique connecting aspects of the intangible cultural heritage elements on the development of sustainable place branding. The study is based on in-depth semi-structured interviews with Latvian place branding experts and content analysis of Latvia's place brand identities. The study indicates place branding as an internal co-creational and educational process of all involved stakeholders of the place and highlights a critical view on the local place branding practices on the notability of the in-depth research of the intangible cultural heritage.

Keywords: belonging, identity, intangible cultural heritage, narrative, self-image, place branding

Procedia PDF Downloads 143
2875 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 514
2874 The Incorporation of Themes Related to Islandness in Tourism Branding among Cold-Water, Warm-Water, and Temperate-Water Islands

Authors: Susan C. Graham

Abstract:

Islands have a long established allure for travellers the world over. From earliest accounts of human history, travellers were drawn by the sense of islandness embodied by these destinations. The concept of islandness describes the essence of what makes islands unique relative to non-islands and extends beyond geographic interpretations by attempting to capture the specific sense of self-exhibited by islanders in relation to their connection to place. The themes most strongly associated with islandness include a) a strong connection to water as both the life blood and a physical barrier, b) a unique culture and robust arts community that is deeply linked to both the island and islanders, c) an appreciation of and for nature, d) a rich sense of history and tradition connected to the place, e) a sense of community and belonging that arose through shared triumphs and struggles, and f) a profound awareness of independence, separateness, and uniqueness derived from both physical and social experience. The island brand, like all brands, is a marketing tactic designed to succinctly express a specific value proposition in simplistic ways which might include a brand symbol, logo, slogan, or representation meant to distinguish one brand from another. If a value proposition is the identification of attributes that separate one brand from another by highlighting the brand’s uniqueness, then presumably island brands may, at least in part, emphasize islandness as part of the destination brand. Yet it may in naïve to expect all islands to brand themselves using similar themes when islands can differ so substantially in terms of population, geography, political climate, economy, culture, and history. Of particular interest is the increased focus on tourism among 'cold-water' islands. This paper will examine the incorporation of themes related to islandness in tourism branding among cold-water, warm-water, and temperate-water islands. The tourism logos of 83 islands were collected and assessed for the use of themes related to islandness, namely water, arts and culture, nature, history and tradition, community and belongingness, and independence, separateness, and uniqueness. The ratings for each theme related to islandness for each of the 83 island destinations were then analyzed to identify if differences exist between cold-water, warm-water, and temperate-water islands. A general consensus of what constitutes 'cold-water' destinations is lacking, therefore a water temperature of 15C was adopted using the guidelines from the National Center for Cold Water Safety. Among these 83 islands, the average high and average low water temperatures of 196 specific locations, including the capital, northern, and southern most points of each island, was recorded to determine if the location was a cold-water (average high and low below 15C), warm-water (average high and low above 15C), or temperate-water (average high above 15C and low below 15C) location.

Keywords: branding, cold-water, islands, tourism

Procedia PDF Downloads 223
2873 Research Approaches for Identifying Images of the Past in the Built Environment

Authors: Ahmad Al-Zoabi

Abstract:

Development of research approaches for identifying images of the past in the built environment is at a beginning stage, and a review of the current literature reveals a limited body of research in this area. This study seeks to make a contribution to fill this void. It investigates the theoretical and empirical studies that examine the built environment as a medium for communicating the past in order to understand how images of the past are operationalized in these studies. Findings revealed that image could be operationalized in several ways depending on the focus of the study. Three concerns were addressed in this study when defining the image of the past: (a) to investigate an 'everyday' popular image of the past; (b) to look at the building's image as an integrated part of a larger image for the city; and (c) to find patterns within residents' images of the past. This study concludes that a future study is needed to address the effects of different scales (size and depth of history) of cities and of different cultural backgrounds of images of the past.

Keywords: architecture, built environment, image of the past, research approaches

Procedia PDF Downloads 314