Search results for: the Improved Element Free Galerkin method (IEFG)
23891 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism
Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü
Abstract:
Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.Keywords: fermentation, ion exchange, lactic acid, purification, whey
Procedia PDF Downloads 50323890 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing
Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe
Procedia PDF Downloads 30823889 Crater Pattern on the Moon and Origin of the Moon
Authors: Xuguang Leng
Abstract:
The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth.Keywords: moon, origin, crater, pattern
Procedia PDF Downloads 9723888 A Study on Optimum Shape in According to Equivalent Stress Distributions at the Die and Plug in the Multi-Pass Drawing Process
Authors: Yeon-Jong Jeong, Mok-Tan Ahn, Seok-Hyeon Park, Seong-Hun Ha, Joon-Hong Park, Jong-Bae Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factors influencing the productivity and formability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and formability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: multi-pass shape drawing, equivalent stress, FEM, finite element method, optimum shape
Procedia PDF Downloads 48123887 Using the Nonlocal Theory of Free Vibrations Nanobeam
Authors: Ali Oveysi Sarabi
Abstract:
The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories
Procedia PDF Downloads 53623886 Determining Factors of Suspended Glass Systems with Pre-Stress Cable Truss
Authors: Cemil Atakara, Hüseyin Eryaman
Abstract:
The use of glass as an envelope of a building has been increasing in the twentieth century. For more transparency and dematerialization new glass facade types have emerged in the past two decades which depends on point fixed glazing system (PFGS). The aim of this study is to analyze of the PFGS systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. This new system is desired because it enhances the transparency of the façade and it minimizes the component of the frames or of the profiles. This PFGS led to new structural elements which use cables, rods, trusses when designing a glass building facades, this structural element called the suspended glass system with pre-stressed cable truss (SGSPCT) which has been used for the first time in 1980 in Serres building. The twenty glass buildings which are designed in different systems have been analyzed during this study. After these analyses five selected SGSPCT building analyzed deeply and one skeletal frame building selected from Lefkosa redesigned according to the analysis results. These selected buildings have been included of various cable-truss system typologies and degree. The methodology of this study is building analysis method and literature survey with the help of books, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings and case building have been detailed analyzed with their architectural drawings, photographs and details. A gridshell structure can be compared with a shell structure; it consists of discrete members connecting nodal points. As these nodal points lie on the surface of an imaginary shell, their shapes function almost identically. Difference between shell and gridshell structures can be found in the fact that, due to their free-form and thus, due to the presence of bending forces, gridshells are required to resist loading through their cross-section. This research is divided into parts. A general study about the glass building and cable-glass and grid shell system will be done in the first chapters. Structural analyses and detailed analyses with schematic drawings with the plans, sections of the selected buildings will be explained in the second part. The third part it consists of the advantages and disadvantages of the use of the SGSPCT and Grid Shell in architecture. The study consists of four chapters including the introduction chapter. The general information of the SGSPCT and glazing system has been mentioned in the first chapter. Structural features, typologies, transparency principle and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of case building have been done according to their schematic drawings with the plans, sections in the third chapter. After third chapter SGSPCT discussed on to the case building and selected buildings. SGSPCT systems have been compared with their advantages and disadvantages to the other systems. Advantages of cable-truss systems and SGSPCT have been concluded that the use of glass substrates in the last chapter.Keywords: cable truss, glass, grid shell, transparency
Procedia PDF Downloads 41223885 A Model of Critical Consideration of Environmental Education: Concepts, Contexts, and Competencies
Authors: Mohammad Anwar, Hamid Ullah Khan, Shah Waliullah
Abstract:
Recently, environmental education is an essential element in avoiding environmental degradation around the globe that needs new articles and policymakers’ emphasis. Hence, the present article examines the impact of environmental education on environmental knowledge, environmental behavior, and environmental attitudes in Indonesia. The present research also investigated the moderating role of government support in environmental education, environmental knowledge, environmental behavior, and environmental attitude in Indonesia. A questionnaire was used as the primary data collection method. The smart PLS was utilized to test the association among variables and the hypotheses of the study. The results revealed that environmental education had a significant and positive linkage with environmental knowledge, environmental behavior, and environmental attitude in Indonesia. The findings also exposed that government support significantly moderated environmental education, environmental knowledge, and environmental behavior in Indonesia. The findings of this research would provide help to the policymakers in establishing the policies related to environmental education and reducing environmental degradation.Keywords: environmental education, environmental knowledge, environmental behavior, environmental attitude, government support
Procedia PDF Downloads 9623884 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method
Procedia PDF Downloads 23923883 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads
Authors: Khaled Sandjak, Boualem Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials
Procedia PDF Downloads 26123882 Quartic Spline Method for Numerical Solution of Self-Adjoint Singularly Perturbed Boundary Value Problems
Authors: Reza Mohammadi
Abstract:
Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis
Procedia PDF Downloads 36123881 Research on the Dynamic Characteristics of Multi-Condition Penetration of Concrete by Warhead-Fuze Systems
Authors: Shaoxiang Wang, Xiangjin Zhang
Abstract:
This study focuses on the overload environment and dynamic response of the core components (i.e., sensors) within the fuze of a warhead-fuze system during penetration of typical targets. Considering the connection structure between the warhead and the fuze, as well as the internal structure of the fuze, a finite element model of the warhead-fuze system penetrating a semi-infinite thick concrete target was constructed using the finite element analysis software LS-DYNA for numerical simulation. The results reveal that the response signal of the sensors inside the warhead-fuze system is larger in magnitude and exhibits greater vibration disturbances compared to the acceleration signal of the warhead. Moreover, the study uncovers the dynamic response characteristics of the sensors within the warhead-fuze system under multi-condition scenarios involving different target strengths and penetration angles. The research findings provide a sound basis for the rapid and effective prediction of the dynamic response and overload characteristics of critical modules within the fuze under different working conditions, offering technical references for the integrated design of warhead-fuze systems.Keywords: penetration, warhead-fuze system, multi-condition, acceleration overload signal, numerical simulation
Procedia PDF Downloads 2823880 Method of Synthesis of Controlled Generators Balanced a Strictly Avalanche Criteria-Functions
Authors: Ali Khwaldeh, Nimer Adwan
Abstract:
In this paper, a method for constructing a controlled balanced Boolean function satisfying the criterion of a Strictly Avalanche Criteria (SAC) effect is proposed. The proposed method is based on the use of three orthogonal nonlinear components which is unlike the high-order SAC functions. So, the generator synthesized by the proposed method has separate sets of control and information inputs. The proposed method proves its simplicity and the implementation ability. The proposed method allows synthesizing a SAC function generator with fixed control and information inputs. This ensures greater efficiency of the built-in oscillator compared to high-order SAC functions that can be used as a generator. Accordingly, the method is completely formalized and implemented as a software product.Keywords: boolean function, controlled balanced boolean function, strictly avalanche criteria, orthogonal nonlinear
Procedia PDF Downloads 15623879 Antioxidant Activity of Launaea nudicaulis Growing in Southwest of Algeria
Authors: Abdelkrim Cheriti, Mebarka Belboukhari, Nasser Belboukhari
Abstract:
Launaea Cass. is a small genus of the family Asteraceae (tribe Lactuceae, subtribe Sonchinae), consisting of 54 species, of which 9 are presented in the flora of Algeria and is mainly distributed in the South Mediterranean, Africa and SW Asia. Plants in the Launaea genus have been used ethnobotanically as bitter stomachic, for treating diarrhea, gastrointestinal tracts, as anti-inflammatory, for skin diseases, treatment of infected wounds, hepatic pains, children fever, as soporific, lactagogue, diuretic and as insecticidal. Antioxidants are vital substances, which possess the ability to protect the body from damages caused by free radical induced oxidative stress. A variety of free radical scavenging antioxidants is found in a number of dietary sources. The main objective of this study focused on the screening of antioxidant activity of Launaea nudicaulis (Asteraceae) extracts. The in vitro antioxidant activity was investigated with DPPH radical scavenging assay. The quantitative evaluation of DPPH scavenging activity showed that n-BuOH and EtOAc extracts are the most active extracts with a percentage of antiradical activity of 89,62% and 71,57% respectively.Keywords: Launaea, phytochemical, South Algeria, Sahara, endemic specie
Procedia PDF Downloads 44123878 Multi-Pass Shape Drawing Process Design for Manufacturing of Automotive Reinforcing Agent with Closed Cross-Section Shape using Finite Element Method Analysis
Authors: Mok-Tan Ahn, Hyeok Choi, Joon-Hong Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factor influencing the productivity and moldability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and moldability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. The purpose of this study, Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: automotive reinforcing agent, multi-pass shape drawing, automotive parts, FEM analysis
Procedia PDF Downloads 45523877 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 18323876 Integrated Thermal Control to Improve Workers' Intellectual Concentration in Office Environment
Authors: Kimi Ueda, Kosuke Sugita, Soma Kawamoto, Hiroshi Shimoda, Hirotake Ishii, Fumiaki Obayashi, Kazuhiro Taniguchi, Ayaka Suzuki
Abstract:
The authors have focused on the thermal difference between office rooms and break rooms, and proposed an integrated thermal control method to improve workers’ intellectual concentration. First, a trial experiment was conducted to verify the effect of temperature difference on workers’ intellectual concentration with using two experimental rooms; a thermally neutral break room and a cooler office room. As the result of the experiment, it was found that the thermal difference had a significant effect on improving their intellectual concentration. Workers, however, often take a short break at their desks without moving to a break room, so that the thermal difference cannot be given to them. So utilization of airflow was proposed as an integrated thermal control method instead of the temperature difference to realize the similar effect. Concretely, they are exposed to airflow when working in order to reduce their effective temperature while it is weakened when taking a break. Another experiment was conducted to confirm the effect of the airflow control on their intellectual concentration. As the result of concentration index and questionnaire survey, their intellectual concentration was significantly improved in the integrated thermal controlled environment. It was also found that most of them felt more comfortable and had higher motivation and higher degree of concentration in the environment.Keywords: airflow, evaluation experiment, intellectual concentration, thermal difference
Procedia PDF Downloads 29423875 The Use of Culture as a Campaign Method in Indonesian Parliamentary Election
Authors: Azza Habibullah
Abstract:
The principal objective of this paper is to show the use of participatory culture in the parliamentarian campaign. The use of this method has always been non-popular amongst the parliamentarian candidates due to the amount of times and energy that they need to spent with the constituents. However, due to many parliamentarian corruption cases in the last five years period, some political party have been losing peoples trust. That political party trust lost had also affecting the parliamentarian candidates electability, so they invent some creative campaign method that involving their constituent with more intimates and friendly environment. In this paper, an observation is done to a parliamentarian candidate from Partai Keadilan Sejahtera (Prosperous Justice Party) in Bandung and Cimahi City area, West Java. This Parliamentraian candidate is known for her personal-approach campaign method such as a puppet show, hanging out with group of ex-bike gang leaders, and going fishing with the constituent. This paper will compare her method with other parliamentarian candidates from the same party as her that mostly use mainstream campaign method such as open speech, print media, an other one way campaign method. While the other parliamentarian candidates failed to reach the parliamentarian threshold, the participatory method had proven as an effective method.Keywords: participatory culture, Indonesian parliamentary election, Prosperous Justice Party, electability
Procedia PDF Downloads 26623874 Environmental Study on Urban Disinfection Using an On-site Generation System
Authors: Víctor Martínez del Rey, Kourosh Nasr Esfahani, Amir Masoud Samani Majd
Abstract:
In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.Keywords: disinfection, free available chlorine, on-site generation, sodium hypochlorite
Procedia PDF Downloads 11823873 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix
Authors: Wesley Teskey, Vedran Glavas, Julian Wegener
Abstract:
Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design
Procedia PDF Downloads 10723872 The Environmental Impact of Wireless Technologies in Nigeria: An Overview of the IoT and 5G Network
Authors: Powei Happiness Kerry
Abstract:
Introducing wireless technologies in Nigeria have improved the quality of lives of Nigerians, however, not everyone sees it in that light. The paper on the environmental impact of wireless technologies in Nigeria summarizes the scholarly views on the impact of wireless technologies on the environment, beaming its searchlight on 5G and internet of things in Nigeria while also exploring the theory of the Technology Acceptance Model (TAM). The study used a qualitative research method to gather important data from relevant sources and contextually draws inference from the derived data. The study concludes that the Federal Government of Nigeria, before agreeing to any latest development in the world of wireless technologies, should weigh the implications and deliberate extensively with all stalk holders putting into consideration the confirmation it will receive from the National Assembly.Keywords: Internet of Things, radiofrequency, electromagnetic radiation, information and communications technology, ICT, 5G
Procedia PDF Downloads 13423871 X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions
Authors: Vincent Kheswa
Abstract:
X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV.Keywords: bismuth-titanium-phosphate glass, x-ray shielding, LAC, MAC, radiation shielding
Procedia PDF Downloads 5923870 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 22223869 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique
Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian
Abstract:
Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction
Procedia PDF Downloads 8023868 An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU
Authors: Jinho Hur, Minjung Shin, Heekyu Kim
Abstract:
In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced.Keywords: structure borne noise, TPU, viaduct rail station, vibration reduction method
Procedia PDF Downloads 54323867 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques
Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada
Abstract:
Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer
Procedia PDF Downloads 14823866 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration
Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw
Abstract:
Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel
Procedia PDF Downloads 34923865 Traditional Management Systems and the Conservation of Cultural and Natural Heritage: Multiple Case Studies in Zimbabwe
Authors: Nyasha Agnes Gurira, Petronella Katekwe
Abstract:
Traditional management systems (TMS) are a vital source of knowledge for conserving cultural and natural heritage. TMS’s are renowned for their ability to preserve both tangible and intangible manifestations of heritage. They are a construct of the intricate relationship that exists between heritage and host communities, where communities are recognized as owners of heritage and so, set up management mechanisms to ensure its adequate conservation. Multiple heritage condition surveys were conducted to assess the effectiveness of using TMS in the conservation of both natural and cultural heritage. Surveys were done at Nharira Hills, Mahwemasimike, Dzimbahwe, Manjowe Rock art sites and Norumedzo forest which are heritage places in Zimbabwe. It assessed the state of conservation of the five case studies and assessed the role that host communities play in the management of these heritage places. It was revealed that TMS’s are effective in the conservation of natural heritage, however in relation to heritage forms with cultural manifestations, there are major disparities. These range from differences in appreciation and perception of value within communities leading to vandalism, over emphasis in the conservation of the intangible element as opposed to the tangible. This leaves the tangible element at risk. Despite these issues, TMS are a reliable knowledge base which enables more holistic conservation approaches for cultural and natural heritage.Keywords: communities, cultural intangible, tangible heritage, traditional management systems, natural
Procedia PDF Downloads 56123864 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress
Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood
Abstract:
Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop
Procedia PDF Downloads 3923863 Sex-Dependent Fitness Improvement of Hercules Beetle Larvae by Amendment of Thermophile-Fermented Compost to Humus
Authors: Futo Asano, Yusuke Yatsushiro, Hirokuni Miyamoto, Hiroaki Kodama
Abstract:
A thermophile-fermented compost is produced using small fishes, crabs, and shrimps under a high temperature (approximately 75℃) by fermentation-associated self-heating. This compost has been used as a feed additive for pigs and hens in Japan, and the fecundity of this livestock is enhanced. Firmicutes is a dominant phylum in the microbial composition of the compost. We first reported that improvement of female larval fitness of Hercules beetle can be achieved by amendment of this compost to the humus. When the 90-d-old larvae were reared for subsequent 72 days in the humus with this compost, the growth of female larvae was significantly enhanced when compared with the growth of female larvae in the humus without the compost. In contrast, the growth of male larvae in the compost-free humus was the same as the larvae grow in the compost-amended humus. The bacterial composition of the feces of larvae was determined at 0 days and 46 days after transfer to the humus with or without the compost. The most dominant bacterium in the feces was Xylanimonas. Interestingly, the growth improvement of female larvae was associated with an increased abundance of Mollicutes in the fecal samples. These results indicate that the compost act as a probiotic material for enhancing the female larvae growth by supporting Mollicutes. Here, we tried to isolate Mollicutes from the contents of the midgut and hindgut of the 3rd instar female larvae of the Hercules beetle. These gut contents were spread onto a selective agar medium for Mollicutes (PPLO agar broth, BD Difco, NJ, USA). Although we isolated none of the Mollicutes until now, several bacteria that are closely related to Xylanimonas and Luteimicrobium were isolated. These isolates have xylanase and glucanase (CMCase) activities. We show the gut bacterial profiles of larvae and discuss how the fitness of female larvae of the Hercules beetle is improved by the compost.Keywords: compost, beetle, mollicutes, woody biomass
Procedia PDF Downloads 8423862 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application
Authors: Li Maksym, Prabhakar M. N., Jung-Il Song
Abstract:
In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism
Procedia PDF Downloads 92