Search results for: railway wheel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 445

Search results for: railway wheel

235 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 295
234 Sustainable Crop Mechanization among Small Scale Rural Farmers in Nigeria: The Hurdles

Authors: Charles Iledun Oyewole

Abstract:

The daunting challenge that the ‘man with the hoe’ is going to face in the coming decades will be complex and interwoven. With global population already above 7 billion people, it has been estimated that food (crop) production must more than double by 2050 to meet up with the world’s food requirements. Nigeria population is also expected to reach over 240 million people by 2050, at the current annual population growth of 2.61 per cent. The country’s farming population is estimated at over 65 per cent, but the country still depends on food importation to complement production. The small scale farmer, who depends on simple hand tools: hoes and cutlasses, remains the centre of agricultural production, accounting for 90 per cent of the total agricultural output and 80 per cent of the market flow. While the hoe may have been a tool for sustainable development at a time in human history, this role has been smothered by population growth, which has brought too many mouths to be fed (over 170 million), as well as many industries to fuel with raw materials. It may then be argued that the hoe is unfortunately not a tool for the coming challenges and that agricultural mechanization should be the focus. However, agriculture as an enterprise is a ‘complete wheel’ which does not work when broken, particularly, in respect to mechanization. Generally, mechanization will prompt increase production, where land is readily available; increase production, will require post-harvest handling mechanisms, crop processing and subsequent storage. An important aspect of this is readily available and favourable markets for such produce; fuel by good agricultural policies. A break in this wheel will lead to the process of mechanization crashing back to subsistence production, and probably reversal to the hoe. The focus of any agricultural policy should be to chart a course for sustainable mechanization that is environmentally friendly, that may ameliorate Nigeria’s food and raw material gaps. This is the focal point of this article.

Keywords: Crop production, Farmer, Hoes, Mechanization, Policy framework, Population, Growth, Rural areas

Procedia PDF Downloads 192
233 Corruption, Institutional Quality and Economic Growth in Nigeria

Authors: Ogunlana Olarewaju Fatai, Kelani Fatai Adeshina

Abstract:

The interplay of corruption and institutional quality determines how effective and efficient an economy progresses. An efficient institutional quality is a key requirement for economic stability. Institutional quality in most cases has been used interchangeably with Governance and these have given room for proxies that legitimized Governance as measures for institutional quality. A poorly-tailored institutional quality has a penalizing effect on corruption and economic growth, while defective institutional quality breeds corruption. Corruption is a hydra-headed phenomenon as it manifests in different forms. The most celebrated definition of corruption is given as “the use or abuse of public office for private benefits or gains”. It also denotes an arrangement between two mutual parties in the determination and allocation of state resources for pecuniary benefits to circumvent state efficiency. This study employed Barro (1990) type augmented model to analyze the nexus among corruption, institutional quality and economic growth in Nigeria using annual time series data, which spanned the period 1996-2019. Within the analytical framework of Johansen Cointegration technique, Error Correction Mechanism (ECM) and Granger Causality tests, findings revealed a long-run relationship between economic growth, corruption and selected measures of institutional quality. The long run results suggested that all the measures of institutional quality except voice & accountability and regulatory quality are positively disposed to economic growth. Moreover, the short-run estimation indicated a reconciliation of the divergent views on corruption which pointed at “sand the wheel” and “grease the wheel” of growth. In addition, regulatory quality and the rule of law indicated a negative influence on economic growth in Nigeria. Government effectiveness and voice & accountability, however, indicated a positive influence on economic growth. The Granger causality test results suggested a one-way causality between GDP and Corruption and also between corruption and institutional quality. Policy implications from this study pointed at checking corruption and streamlining institutional quality framework for better and sustained economic development.

Keywords: institutional quality, corruption, economic growth, public policy

Procedia PDF Downloads 138
232 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example

Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang

Abstract:

Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.

Keywords: land use, silk road economic belt, solar energy, transportation infrastructure

Procedia PDF Downloads 215
231 Fuel Cells Not Only for Cars: Technological Development in Railways

Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz

Abstract:

Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.

Keywords: railway, hydrogen, fuel cells, hybrid vehicles

Procedia PDF Downloads 164
230 A Critical Study on Unprecedented Employment Discrimination and Growth of Contractual Labour Engaged by Rail Industry in India

Authors: Munmunlisa Mohanty, K. D. Raju

Abstract:

Rail industry is one of the model employers in India has separate national legislation (Railways Act 1989) to regulate its vast employment structure, functioning across the country. Indian Railway is not only the premier transport industry of the country; indeed, it is Asia’s most extensive rail network organisation and the world’s second-largest industry functioning under one management. With the growth of globalization of industrial products, the scope of anti-employment discrimination is no more confined to gender aspect only; instead, it extended to the unregularized classification of labour force applicable in the various industrial establishments in India. And the Indian Rail Industry inadvertently enhanced such discriminatory employment trends by engaging contractual labour in an unprecedented manner. The engagement of contractual labour by rail industry vanished the core “Employer-Employee” relationship between rail management and contractual labour who employed through the contractor. This employment trend reduces the cost of production and supervision, discourages the contractual labour from forming unions, and reduces its collective bargaining capacity. So, the primary intention of this paper is to highlight the increasing discriminatory employment scope for contractual labour engaged by Indian Railways. This paper critically analyses the diminishing perspective of anti-employment opportunity practiced by Indian Railways towards contractual labour and demands an urgent outlook on the probable scope of anti-employment discrimination against contractual labour engaged by Indian Railways. The researcher used doctrinal methodology where primary materials (Railways Act, Contract Labour Act and Occupational, health and Safety Code, 2020) and secondary data (CAG Report 2018, Railways Employment Regulation Rules, ILO Report etc.) are used for the paper.

Keywords: anti-employment, CAG Report, contractual labour, discrimination, Indian Railway, principal employer

Procedia PDF Downloads 140
229 Improving the Efficiency of Pelton Wheel and Cross-Flow Micro Hydro Power Plants

Authors: Loice K. Gudukeya, Charles Mbohwa

Abstract:

The research investigates hydropower plant efficiency with a view to improving the power output while keeping the overall project cost per kilowatt produced within an acceptable range. It reviews the commonly used Pelton and Cross-flow turbines which are employed in the region for micro-hydro power plants. Turbine parameters such as surface texture, material used and fabrication processes are dealt with the intention of increasing the efficiency by 20 to 25 percent for the micro hydro-power plants.

Keywords: hydro, power plant, efficiency, manufacture

Procedia PDF Downloads 406
228 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 354
227 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 116
226 Potential Assessment and Techno-Economic Evaluation of Photovoltaic Energy Conversion System: A Case of Ethiopia Light Rail Transit System

Authors: Asegid Belay Kebede, Getachew Biru Worku

Abstract:

The Earth and its inhabitants have faced an existential threat as a result of severe manmade actions. Global warming and climate change have been the most apparent manifestations of this threat throughout the world, with increasingly intense heat waves, temperature rises, flooding, sea-level rise, ice sheet melting, and so on. One of the major contributors to this disaster is the ever-increasing production and consumption of energy, which is still primarily fossil-based and emits billions of tons of hazardous GHG. The transportation industry is recognized as the biggest actor in terms of emissions, accounting for 24% of direct CO2 emissions and being one of the few worldwide sectors where CO2 emissions are still growing. Rail transportation, which includes all from light rail transit to high-speed rail services, is regarded as one of the most efficient modes of transportation, accounting for 9% of total passenger travel and 7% of total freight transit. Nonetheless, there is still room for improvement in the transportation sector, which might be done by incorporating alternative and/or renewable energy sources. As a result of these rapidly changing global energy situations and rapidly dwindling fossil fuel supplies, we were driven to analyze the possibility of renewable energy sources for traction applications. Even a small achievement in energy conservation or harnessing might significantly influence the total railway system and have the potential to transform the railway sector like never before. As a result, the paper begins by assessing the potential for photovoltaic (PV) power generation on train rooftops and existing infrastructure such as railway depots, passenger stations, traction substation rooftops, and accessible land along rail lines. As a result, a method based on a Google Earth system (using Helioscopes software) is developed to assess the PV potential along rail lines and on train station roofs. As an example, the Addis Ababa light rail transit system (AA-LRTS) is utilized. The case study examines the electricity-generating potential and economic performance of photovoltaics installed on AALRTS. As a consequence, the overall capacity of solar systems on all stations, including train rooftops, reaches 72.6 MWh per day, with an annual power output of 10.6 GWh. Throughout a 25-year lifespan, the overall CO2 emission reduction and total profit from PV-AA-LRTS can reach 180,000 tons and 892 million Ethiopian birrs, respectively. The PV-AA-LRTS has a 200% return on investment. All PV stations have a payback time of less than 13 years, and the price of solar-generated power is less than $0.08/kWh, which can compete with the benchmark price of coal-fired electricity. Our findings indicate that PV-AA-LRTS has tremendous potential, with both energy and economic advantages.

Keywords: sustainable development, global warming, energy crisis, photovoltaic energy conversion, techno-economic analysis, transportation system, light rail transit

Procedia PDF Downloads 62
225 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 275
224 Determination of Influence Lines for Train Crossings on a Tied Arch Bridge to Optimize the Construction of the Hangers

Authors: Martin Mensinger, Marjolaine Pfaffinger, Matthias Haslbeck

Abstract:

The maintenance and expansion of the railway network represents a central task for transport planning in the future. In addition to the ultimate limit states, the aspects of resource conservation and sustainability are increasingly more necessary to include in the basic engineering. Therefore, as part of the AiF research project, ‘Integrated assessment of steel and composite railway bridges in accordance with sustainability criteria’, the entire lifecycle of engineering structures is involved in planning and evaluation, offering a way to optimize the design of steel bridges. In order to reduce the life cycle costs and increase the profitability of steel structures, it is particularly necessary to consider the demands on hanger connections resulting from fatigue. In order for accurate analysis, a number simulations were conducted as part of the research project on a finite element model of a reference bridge, which gives an indication of the internal forces of the individual structural components of a tied arch bridge, depending on the stress incurred by various types of trains. The calculations were carried out on a detailed FE-model, which allows an extraordinarily accurate modeling of the stiffness of all parts of the constructions as it is made up surface elements. The results point to a large impact of the formation of details on fatigue-related changes in stress, on the one hand, and on the other, they could depict construction-specific specifics over the course of adding stress. Comparative calculations with varied axle-stress distribution also provide information about the sensitivity of the results compared to the imposition of stress and axel distribution on the stress-resultant development. The calculated diagrams help to achieve an optimized hanger connection design through improved durability, which helps to reduce the maintenance costs of rail networks and to give practical application notes for the formation of details.

Keywords: fatigue, influence line, life cycle, tied arch bridge

Procedia PDF Downloads 305
223 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 150
222 Novel Animal Drawn Wheel-Axle Mechanism Actuated Knapsack Boom Sprayer

Authors: Ibrahim O. Abdulmalik, Michael C. Amonye, Mahdi Makoyo

Abstract:

Manual knapsack sprayer is the most popular means of farm spraying in Nigeria. It has its limitations. Apart from the human fatigue, which leads to unsteady walking steps, their field capacities are small. They barely cover about 0.2hectare per hour. Their small swath implies that a sizeable farm would take several days to cover. Weather changes are erratic and often it is desired to spray a large farm within hours or few days for even effect, uniformity and to avoid adverse weather interference. It is also often required that a large farm be covered within a short period to avoid re-emergence of weeds before crop emergence. Deployment of many knapsack operators to large farms has not been successful. Human error in taking equally spaced swaths usually result in over dosage of overlaps and in unapplied areas due to error at edges overlaps. Large farm spraying require boom equipment with larger swath. Reduced error in swath overlaps and spraying within the shortest possible time are then assured. Tractor boom sprayers would readily overcome these problems and achieve greater coverage, but they are not available in the country. Tractor hire for cultivation is very costly with the attendant lack of spare parts and specialized technicians for maintenance wherefore farmers find it difficult to engage tractors for cultivation and would avoid considering the employment of a tractor boom sprayer. Animal traction in farming is predominant in Nigeria, especially in the Northern part of the country. Development of boom sprayers drawn by work animals surely implies the maximization of animal utilization in farming. The Hydraulic Equipment Development Institute, Kano, in keeping to its mandate of targeted R&D in hydraulic and pneumatic systems, has developed an Animal Drawn Knapsack Boom Sprayer with four nozzles using the axle mechanism of a two wheeled cart to actuate the piston pump of two knapsack sprayers in line with appropriate technology demand of the country. It is hoped that the introduction of this novel contrivance shall enhance crop protection practice and lead to greater crop and food production in Nigeria.

Keywords: boom, knapsack, farm, sprayer, wheel axle

Procedia PDF Downloads 263
221 The Introduction of Modern Diagnostic Techniques and It Impact on Local Garages

Authors: Mustapha Majid

Abstract:

Gone were the days when technicians/mechanics will have to spend too much time trying to identify a mechanical fault and rectify the problem. Now the emphasis is on the use of Automobile diagnosing Equipment through the use of computers and special software. An investigation conducted at Tamale Metropolis and Accra in the Northern and Greater Accra regions of Ghana, respectively. Methodology for data gathering were; questionnaires, physical observation, interviews, and newspaper. The study revealed that majority of mechanics lack computer skills which can enable them use diagnosis tools such as Exhaust Gas Analyzer, Scan Tools, Electronic Wheel Balancing machine, etc.

Keywords: diagnosing, local garages and modern garages, lack of knowledge of diagnosing posing an existential threat, training of local mechanics

Procedia PDF Downloads 133
220 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 204
219 Eco-Politics of Infrastructure Development in and Around Protected Areas in Kenya: The Case of Nairobi National Park

Authors: Teresa Wanjiru Mbatia

Abstract:

On 7th June 2011, the government Minister of Roads in Kenya announced the proposed construction of a major highway known as a southern bypass to run on the northern border of the Nairobi National Park. The following day on 8th June 2011, the chairperson of the Friends of Nairobi National Park (FONNAP) posted a protest statement on their website, with the heading, ‘Nairobi Park is Not a cake’ alerting its members and conservation groups, with the aim of getting support to the campaign against the government’s intention to hive off a section of the park for road construction. This was the first and earliest statement that led to a series of other events that culminated in conservationists and some other members of the public campaign against the government’s plan to hive off sections of the park to build road and railway infrastructure in or around the park. Together with other non-state actors, mostly non-governmental organisations in conservation/environment and tourism businesses, FoNNAP issued a series of other statements on social, print and electronic media to battle against road and railway construction. This paper examined the strategies, outcomes and interests of actors involved in opposing/proposing the development of transport infrastructure in and around the Nairobi National Park. Specifically, the objectives were to analyse the: (1) Arguments put forward by the eco-warriors to protest infrastructure development; (2) Background and interests of the eco-warriors; (3) Needs/interests and opinions of ordinary common citizens on transport infrastructural development, particularly in and around the urban nature reserve and (4) Final outcomes of the eco-politics surrounding infrastructure development in and around Nairobi National Park. The methodological approach used was environmental history and the social construction of nature. The study collected combined qualitative data using four main approaches, the grounded theory approach, narratives, case studies and a phenomenological approach. The information collected was analysed using critical discourse analysis. The major findings of the study were that under the guise of “public participation,” influential non-state actors have the capacity to perpetuate social-spatial inequalities in the form of curtailing the majority from accessing common public goods. A case in point in this study is how the efforts of powerful conservationists, environmentalists, and tourism businesspersons managed to stall the construction of much-needed road and railway infrastructure severally through litigations in lengthy environmental court processes involving injunctions and stop orders to the government bodies in charge. Moreover, powerful non-state actors were found to have formed informal and sometimes formal coalitions with politicians with selfish interests, which serves to deepen the exclusionary practices and the common good. The study concludes that mostly composed of certain types of elites (NGOs, business communities, politicians and privileged social-cultural groups), non-state actors have used participatory policies to advance their own interests at the expense of the majority whom they claim to represent. These practices are traced to the historically unjust social, political, and economic forces involved in the production of space in Nairobi.

Keywords: eco-politics, exclusion, infrastructure, Nairobi national park, non-state actors, protests

Procedia PDF Downloads 158
218 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).

Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot

Procedia PDF Downloads 388
217 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 306
216 Towards a Sustainable High Population Density Urban Intertextuality – Program Re-Configuration Integrated Urban Design Study in Hangzhou, China

Authors: Xuan Li, Lei Xu

Abstract:

By the end of 2014, China has an urban population of 749 million, reaching the urbanization rate of 54.77%. Dense and vertical urban structure has become a common choice for China and most of the densely populated Asian countries for sustainable development. This paper focuses on the most conspicuous urban change period in China, from 2000 to 2010, during which China's population shifted the fastest from rural region to cities. On one hand, the 200 million nationwide "new citizen" along with the 456 million "old citizen" explored in the new-century city for new urban lifestyle and livable built environment; On the other hand, however, large-scale rapid urban constructions are confined to the methods of traditional two-dimensional architectural thinking. Human-oriented design and system thinking have been missing in this intricate postmodern urban condition. This phenomenon, especially the gap and spark between the solid, huge urban physical system and the rich, subtle everyday urban life, will be studied in depth: How the 20th-century high-rise residential building "spontaneously" turned into an old but expensive multi-functional high-rise complex in the 21st century city center; how 21st century new/late 20th century old public buildings with the same function integrated their different architectural forms into the new / old city center? Finally the paper studies cases in Hangzhou: 1) Function Evolve–downtown high-rise residential building “International Garden” and “Zhongshan Garden” (1999). 2) Form Compare–Hangzhou Theater (1998) vs Hangzhou Grand Theatre (2004), Hangzhou City Railway Station (1999) vs Hangzhou East Railway Station (2013). The research aims at the exploring the essence of city from the building form dispel and urban program re-configuration approach, gaining a better consideration of human behavior through compact urban design effort for improving urban intertextuality, searching for a sustainable development path in the crucial time of urban population explosion in China.

Keywords: architecture form dispel, compact urban design, urban intertextuality, urban program re-configuration

Procedia PDF Downloads 476
215 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 369
214 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression

Procedia PDF Downloads 539
213 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia

Authors: S. Cencek, A. Markun

Abstract:

Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.

Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines

Procedia PDF Downloads 218
212 Recommendations to Improve Classification of Grade Crossings in Urban Areas of Mexico

Authors: Javier Alfonso Bonilla-Chávez, Angélica Lozano

Abstract:

In North America, more than 2,000 people annually die in accidents related to railroad tracks. In 2020, collisions at grade crossings were the main cause of deaths related to railway accidents in Mexico. Railway networks have constant interaction with motor transport users, cyclists, and pedestrians, mainly in grade crossings, where is the greatest vulnerability and risk of accidents. Usually, accidents at grade crossings are directly related to risky behavior and non-compliance with regulations by motorists, cyclists, and pedestrians, especially in developing countries. Around the world, countries classify these crossings in different ways. In Mexico, according to their dangerousness (high, medium, or low), types A, B and C have been established, recommending for each one different type of auditive and visual signaling and gates, as well as horizontal and vertical signaling. This classification is based in a weighting, but regrettably, it is not explained how the weight values were obtained. A review of the variables and the current approach for the grade crossing classification is required, since it is inadequate for some crossings. In contrast, North America (USA and Canada) and European countries consider a broader classification so that attention to each crossing is addressed more precisely and equipment costs are adjusted. Lack of a proper classification, could lead to cost overruns in the equipment and a deficient operation. To exemplify the lack of a good classification, six crossings are studied, three located in the rural area of Mexico and three in Mexico City. These cases show the need of: improving the current regulations, improving the existing infrastructure, and implementing technological systems, including informative signals with nomenclature of the involved crossing and direct telephone line for reporting emergencies. This implementation is unaffordable for most municipal governments. Also, an inventory of the most dangerous grade crossings in urban and rural areas must be obtained. Then, an approach for improving the classification of grade crossings is suggested. This approach must be based on criteria design, characteristics of adjacent roads or intersections which can influence traffic flow through the crossing, accidents related to motorized and non-motorized vehicles, land use and land management, type of area, and services and economic activities in the zone where the grade crossings is located. An expanded classification of grade crossing in Mexico could reduce accidents and improve the efficiency of the railroad.

Keywords: accidents, grade crossing, railroad, traffic safety

Procedia PDF Downloads 89
211 The Quantitative Analysis of the Influence of the Superficial Abrasion on the Lifetime of the Frog Rail

Authors: Dong Jiang

Abstract:

Turnout is the essential equipment on the railway, which also belongs to one of the strongest demanded infrastructural facilities of railway on account of the more seriously frog rail failures. In cooperation with Germany Company (DB Systemtechnik AG), our research team focuses on the quantitative analysis about the frog rails to predict their lifetimes. Moreover, the suggestions for the timely and effective maintenances are made to improve the economy of the frog rails. The lifetime of the frog rail depends strongly on the internal damage of the running surface until the breakages occur. On the basis of Hertzian theory of the contact mechanics, the dynamic loads of the running surface are calculated in form of the contact pressures on the running surface and the equivalent tensile stress inside the running surface. According to material mechanics, the strength of the frog rail is determined quantitatively in form of the Stress-cycle (S-N) curve. Under the interaction between the dynamic loads and the strength, the internal damage of the running surface is calculated by means of the linear damage hypothesis of the Miner’s rule. The emergence of the first Breakage on the running surface is to be defined as the failure criterion that the damage degree equals 1.0. From the microscopic perspective, the running surface of the frog rail is divided into numerous segments for the detailed analysis. The internal damage of the segment grows slowly in the beginning and disproportionately quickly in the end until the emergence of the breakage. From the macroscopic perspective, the internal damage of the running surface develops simply always linear along the lifetime. With this linear growth of the internal damages, the lifetime of the frog rail could be predicted simply through the immediate introduction of the slope of the linearity. However, the superficial abrasion plays an essential role in the results of the internal damages from the both perspectives. The influences of the superficial abrasion on the lifetime are described in form of the abrasion rate. It has two contradictory effects. On the one hand, the insufficient abrasion rate causes the concentration of the damage accumulation on the same position below the running surface to accelerate the rail failure. On the other hand, the excessive abrasion rate advances the disappearance of the head hardened surface of the frog rail to result in the untimely breakage on the surface. Thus, the relationship between the abrasion rate and the lifetime is subdivided into an initial phase of the increased lifetime and a subsequent phase of the more rapid decreasing lifetime with the continuous growth of the abrasion rate. Through the compensation of these two effects, the critical abrasion rate is discussed to reach the optimal lifetime.

Keywords: breakage, critical abrasion rate, frog rail, internal damage, optimal lifetime

Procedia PDF Downloads 183
210 Implementing Digital Control System in Robotics

Authors: Safiullah Abdullahi

Abstract:

This paper describes the design of a digital control system which controls the speed and direction of a robot. The robot is expected to follow a black thick line with the highest possible speed and lowest error around the line. The control system of the robot will correct for the angle error that is made between the frame axis of the robot and the line. The cause for error is the difference in speed of the two driving wheels of the robot which are driven by two separate DC motors, whereas the speed difference in wheels is due to the un-modeled fraction that is available in the wheels with different magnitudes in each. The control scheme is that a number of photo sensors are mounted in the front of the robot and report their position in reference to the black line to the digital controller. The controller then, evaluates the position error and generates the needed duty cycle for the related wheel motor to drive it faster or slower.

Keywords: digital control, robot, controller, control system

Procedia PDF Downloads 532
209 OmniDrive Model of a Holonomic Mobile Robot

Authors: Hussein Altartouri

Abstract:

In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.

Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot

Procedia PDF Downloads 569
208 Evaluation Performance of Transport Vehicle on Different Surfaces

Authors: Hussein Abbas Jebur, Yasir Abd Ulrazzaq

Abstract:

This study was carried out at the farm of El-Gemmaiza Agriculture Research Station, El-Garbia Governorate Egypt, to determine the performance characteristics of an agricultural transport. The performance of this transportation was compared between three surfaces (asphalt, dusty and field). The study was concentrated on the rate of drawbar pull, slip ratio, tractive efficiency and specific energy per unit area. The comparison was made under three different surfaces (asphalt, dusty and field), different traveling speeds from (3.38 to 6.55 km/h) and variable weights (0 and 300 kg). The results showed that the highest value of the tractive efficiency 60.20% was obtained at traveling speed 4.00 km/h with weight on the rear wheel on the asphalt surface. The highest value of specific energy 1.93 kW.h/ton during use of ballast on rear tractor wheels at traveling speed 3.38 km/h on the field surface.

Keywords: tractor, energy, transportation, weight, power

Procedia PDF Downloads 267
207 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball

Procedia PDF Downloads 604
206 Behaviour of Non-local Correlations and Quantum Information Theoretic Measures in Frustrated Molecular Wheels

Authors: Amit Tribedi

Abstract:

Genuine Quantumness present in Quantum Systems is the resource for implementing Quantum Information and Computation Protocols which can outperform the classical counterparts. These Quantumness measures encompass non-local ones known as quantum entanglement (QE) and quantum information theoretic (QIT) ones, e.g. Quantum Discord (QD). In this paper, some well-known measures of QE and QD in some wheel-like frustrated molecular magnetic systems have been studied. One of the systems has already been synthesized using coordination chemistry, and the other is hypothetical, where the dominant interaction is the spin-spin exchange interaction. Exact analytical methods and exact numerical diagonalization methods have been used. Some counter-intuitive non-trivial features, like non-monotonicity of quantum correlations with temperature, persistence of multipartite entanglement over bipartite ones etc. indicated by the behaviour of the correlations and the QIT measures have been found. The measures, being operational ones, can be used to realize the resource of Quantumness in experiments.

Keywords: 0D Magnets, discord, entanglement, frustration

Procedia PDF Downloads 206