Search results for: student performance prediction
14314 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 42414313 The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures
Authors: C. S. Paglia, E. Pesenti, A. Krattiger
Abstract:
Commercially available methacrylate and acrylamide-based acrylic resins for injection in concrete systems have been tested with respect to the sealing performance and the rebar corrosion. Among the different resins, a methacrylate-based type of acrylic resin significantly inhibited the rebar corrosion. This was mainly caused by the relatively high pH of the resin and the resin aqueous solution. This resin also exhibited a relatively high sealing performance, in particular after exposing the resin to durability tests. The corrosion inhibition behaviour and the sealing properties after the exposition to durability tests were maintained up to one year. The other resins either promoted the corrosion of the rebar and/or exhibited relatively low sealing properties.Keywords: acrylic resin, sealing performance, rebar corrosion, materials
Procedia PDF Downloads 13014312 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility
Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu
Abstract:
The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education
Procedia PDF Downloads 31214311 The Development of Iranian Theatrical Performance through the Integration of Narrative Elements from Western Drama
Authors: Azadeh Abbasikangevari
Abstract:
Background and Objectives: Theatre and performance are two separate themes. What is presented in Iran as a performance is the species and ritual and traditional forms of the play. The Iranian performance has its roots in myth and ritual. Drama is essentially a Western phenomenon that has gradually entered Iran and influenced Iranian performance. A theatre is based on antagonism (axis) and protagonism (anti-axis), while performance has a monotonous and steady motion. The elements of Iranian performance include field, performance on the stage, and magnification in performance, all of which are based on narration. This type of narration has been present in Iranian modern drama. The objective of this study was to analyze the drama structure according to narration elements by a comparison between the Western theater and the Iranian performance and determining the structural differences in the type of narrative. Materials and Methods: In this study, the elements of the drama were analyzed using the library method among the available library resources. The review of the literature included research articles and textbooks which focused on Iranian plays, as well as books and articles which encompassed narrative and drama element. Data were analyzed in the comparative-descriptive method. Results: Examining and studying different kinds of Iranian performances, showed that the narrative has always been a characteristic feature of Iranian plays. Iranians have narrated the stories and myths and have had a particular skill of oral literature. Over time, they slowly introduced narrative culture into their art, where this element is the most important structural element in Iran's dramatic art. Considering the fact that narration in Iranian traditional play, such as Ta'ziyeh and Naghali, was oral and consequently, it was slowly forgotten and excluded from written theatrical texts. Since the drama has entered in its western form in Iran, the plays written by the authors were influenced by narrative elements existing in western plays. Conclusions: The narrative’s element has undoubtedly had an impact on modern Iranian drama and Iranian contemporary drama. Therefore, the element of narration is an integral part of the Iranian traditional play structure.Keywords: drama methodology, Iranian performance, Iranian modern drama, narration
Procedia PDF Downloads 12714310 Financial Management Skills of Supreme Student Government Officers in the Schools Division of Quezon: Basis for Project Financial Literacy Information Program
Authors: Edmond Jaro Malihan
Abstract:
This study aimed to develop and propose Project Financial Literacy Information Program (FLIP) for the Schools Division of Quezon to improve the financial management skills of Supreme Student Government (SSG) officers across different school sizes. This employed a descriptive research design covering the participation of 424 selected SSG officers using purposive sampling procedures from the SDO-Quezon. The consultation was held with DepEd officials, budget officers, and financial advisors to validate the design of the self-made questionnaires in which the computed mean was verbally interpreted using the four-point Likert scale. The data gathered were presented and analyzed using weighted arithmetic mean and ANOVA test. Based on the findings, generally, SSG officers in the SDO-Quezon possess high financial management skills in terms of budget preparation, resource mobilization, and auditing and evaluation. The size of schools has no significant difference and does not contribute to the financial management skills of SSG officers, which they apply in implementing their mandated programs, projects, and activities (PPAs). The Project Financial Literacy Information Program (FLIP) was developed considering their general level of financial management skills and the launched PPAs by the organization. The project covered the suggested training program vital in conducting the Virtual Division Training on Financial Management Skills of the SSG officers.Keywords: financial management skills, SSG officers, school size, financial literacy information program
Procedia PDF Downloads 7114309 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 21814308 Simulation of Glass Breakage Using Voronoi Random Field Tessellations
Authors: Michael A. Kraus, Navid Pourmoghaddam, Martin Botz, Jens Schneider, Geralt Siebert
Abstract:
Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes.Keywords: glass breakage predicition, Voronoi Random Field Tessellation, fragmentation analysis, Bayesian parameter identification
Procedia PDF Downloads 15914307 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics
Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami
Abstract:
Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.Keywords: computational fluid dynamics, FLUENT microfabrication, RPM
Procedia PDF Downloads 16014306 Improved Performance of Cooperative Scheme in the Cellular and Broadcasting System
Authors: Hyun-Jee Yang, Bit-Na Kwon, Yong-Jun Kim, Hyoung-Kyu Song
Abstract:
In the cooperative transmission scheme, both the cellular system and broadcasting system are composed. Two cellular base stations (CBSs) communicating with a user in the cell edge use cooperative transmission scheme in the conventional scheme. In the case that the distance between two CBSs and the user is distant, the conventional scheme does not guarantee the quality of the communication because the channel condition is bad. Therefore, if the distance between CBSs and a user is distant, the performance of the conventional scheme is decreased. Also, the bad channel condition has bad effects on the performance. The proposed scheme uses two relays to communicate well with CBSs when the channel condition between CBSs and the user is poor. Using the relay in the high attenuation environment can obtain both advantages of the high bit error rate (BER) and throughput performance.Keywords: cooperative communications, diversity gain, OFDM, interworking system
Procedia PDF Downloads 57414305 Comparison of Particle Size for ɑ(Alpha) Fe2O3 and ɤ(Gamma)Fe2O3 on Heat Transfer Performance in an Copper Oscillating Heat Pipe
Authors: Hamid Reza Goshayeshi
Abstract:
The effect of ɑ(alpha) Fe2O3 and ɤ(gamma)Fe2O3 particles on the heat transfer performance of an oscillating heat pipe was investigated experimentally. Kerosene was used as the base fluid for the OHP. Six size particles with average diameters of 10 nm, 20 nm, and 30 nm ɑFe2O3 and ɤFe2O3 were investigated, respectively. Experimental results show that the ɤFe2O3 particles added in the OHP significantly affect the heat transfer performance. When the OHP was charged with kerosene and 20 nm ɤ Fe2O3 particles, the OHP can achieve the best heat transfer performance among six particles investigated in this research.Keywords: copper oscillating heat pipe, heat transfer, flow, comparison of ɑ(alpha)Fe2O3 and ɤ(gamma)Fe2O3, increase heat transfer
Procedia PDF Downloads 31614304 The Development of an Integrity Cultivating Module in School-Based Assessment among Malaysian Teachers: A Research Methodology
Authors: Eftah Bte. Moh Hj Abdullah, Abd Aziz Bin Abd Shukor, Norazilawati Binti Abdullah, Rahimah Adam, Othman Bin Lebar
Abstract:
The competency and integrity required for better understanding and practice of School-based Assessment (PBS) comes not only from the process, but also in providing the support or ‘scaffolding’ for teachers to recognize the student as a learner, improve their self-assessment skills, understanding of the daily teaching plan and its constructive alignment of the curriculum, pedagogy and assessment. The cultivation of integrity in PBS among the teachers is geared towards encouraging them to become committed and dedicated in implementing assessments in a serious, efficient manner, thus moving away from the usual teacher-focused approach to the student-focused approach. The teachers show their integrity via their professional commitment, responsibility and actions. The module based on the cultivation of integrity in PBS among Malaysian teachers aims to broaden the guidance support for teachers (embedded in the training), which consists of various domains to enable better evaluation of complex assessment tasks and the construction of suitable instrument for measuring the relevant cognitive, affective and psychomotor domains to describe the students’ achievement. The instrument for integrity cultivation in PBS has been developed and validated for measuring the effectiveness of the module constructed. This module is targeted towards assisting the staff in the Education Ministry, especially the principal trainers, teachers, headmasters and education officers to acquire effective intervention for improving the PBS assessors’ integrity and competency.Keywords: school-based assessment, assessment competency integrity cultivation, professional commitment, module
Procedia PDF Downloads 40914303 Design and Comparative Analysis of Grid-Connected Bipv System with Monocrystalline Silicon and Polycrystalline Silicon in Kandahar Climate
Authors: Ahmad Shah Irshad, Naqibullah Kargar, Wais Samadi
Abstract:
Building an integrated photovoltaic (BIPV) system is a new and modern technique for solar energy production in Kandahar. Due to its location, Kandahar has abundant sources of solar energy. People use both monocrystalline and polycrystalline silicon solar PV modules for the grid-connected solar PV system, and they don’t know which technology performs better for the BIPV system. This paper analyses the parameters described by IEC61724, “Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis,” to evaluate which technology shows better performance for the BIPV system. The monocrystalline silicon BIPV system has a 3.1% higher array yield than the polycrystalline silicon BIPV system. The final yield is 0.2%, somewhat higher for monocrystalline silicon than polycrystalline silicon. Monocrystalline silicon has 0.2% and 4.5% greater yearly yield factor and capacity factors than polycrystalline silicon, respectively. Monocrystalline silicon shows 0.3% better performance than polycrystalline silicon. With 1.7% reduction and 0.4% addition in collection losses and useful energy produced, respectively, monocrystalline silicon solar PV system shows good performance than polycrystalline silicon solar PV system. But system losses are the same for both technologies. The monocrystalline silicon BIPV system injects 0.2% more energy into the grid than the polycrystalline silicon BIPV system.Keywords: photovoltaic technologies, performance analysis, solar energy, solar irradiance, performance ratio
Procedia PDF Downloads 36814302 How Different Perceived Affordances of Game Elements Shape Motivation and Performance in Gamified Learning: A Cognitive Evaluation Theory Perspective
Authors: Kibbeum Na
Abstract:
Previous gamification research has produced mixed results regarding the effectiveness of gamified learning. One possible explanation for this is that individuals perceive the game elements differently. Cognitive Evaluation Theory posits that external rewards can boost or undermine intrinsic motivation, depending on whether the rewards are perceived as informational or controlling. This research tested the hypothesis that game elements can be perceived as either informational feedback or external reward, and the motivational impact differ accordingly. An experiment was conducted using an educational math puzzle to compare the motivation and performance as a result of different perceived affordances game elements. Participants were primed to perceive the game elements as either informational feedback or external reward, and the duration of an attempt to solve the unsolvable puzzle – amotivation indicator – and the puzzle score – a performance indicator–were measured with the game elements incorporated and then without the game elements. Badges and points were deployed as the main game elements. Results showed that, regardless of priming, a significant decrease in performance occurred when the game elements were removed, whereas the control group who solved non-gamified math puzzles maintained their performance. The undermined performance with gamification removal indicates that learners may perceive some game elements as controlling factors irrespective of the way they are presented. The results of the current study also imply that some game elements are better not being implemented to preserve long-term performance. Further research delving into the extrinsic reward-like nature of game elements and its impact on learning motivation is called for.Keywords: cognitive Evaluation Theory, game elements, gamification, motivation, motivational affordance, performance
Procedia PDF Downloads 10414301 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding
Procedia PDF Downloads 30414300 Performance Evaluation of Grid Connected Photovoltaic System
Authors: Abdulkadir Magaji
Abstract:
This study analyzes and compares the actual measured and simulated performance of a 3.2 kwP grid-connected photovoltaic system. The system is located at the Outdoor Facility of Government Day secondary School Katsina State, which lies approximately between coordinate of 12°15′N 7°30′E. The system consists of 14 Mono crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 340. The data presented in this study were measured in the year 2015, where the system supplied a total of 4628 kWh to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study shows 58.4% is higher than those reported elsewhere as compared in the study.Keywords: performance, evaluation, grid connection, photovoltaic system
Procedia PDF Downloads 17914299 Educational Leadership and Artificial Intelligence
Authors: Sultan Ghaleb Aldaihani
Abstract:
- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.Keywords: Education, Leadership, Technology, Artificial Intelligence
Procedia PDF Downloads 4114298 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 15214297 An Empirical Study of the Impacts of Big Data on Firm Performance
Authors: Thuan Nguyen
Abstract:
In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient
Procedia PDF Downloads 24314296 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.Keywords: engine, combustion, cooling system, numerical simulation, power, torque, mechanical super charger
Procedia PDF Downloads 29814295 ISO 9001:2008 Effectiveness on the Performance of Public Organizations in Oman
Authors: Said Rashid Aal Abdulsallam
Abstract:
The purpose of this paper is to measure ISO 9001:2008 effectiveness and determines its impact on the performance dimensions in terms of service quality, operational performance and customer satisfaction from the perspectives of both service providers and receivers. The paper is based on an empirical study carried out on all the ISO 9001:2008 certified departments in the Ministry of Education in the Sultanate of Oman. Data were obtained from the certified departments and their equivalent clients through two structured online questionnaires. Exploratory factor analyses are applied to extract the underlying factors of the indicators of ISO 9001 objectives and performance dimensions. Multiple linear regression analyses are also applied in order to determine the impact of ISO 9001 effectiveness on the performance dimensions of the certified departments. The study sample includes all the ISO 9001 certified departments in the Ministry of Education. The study instruments used target both the service providers as well as the service receivers with the purpose of alleviating the subjective nature of the data collected from the service providers who may be biased in favour of ISO 9001 quality management system or their performance. The findings of the study verify the effectiveness of the application of ISO 9001:2008 quality management system. Additionally, the study reveals that the ISO 9001 certified departments have achieved the ISO 9001 the standard's objectives including prevention of nonconformities, continuous improvement and customer satisfaction focus at different rates. The study also proves that there is a significant relation between the achievement of the ISO 9001 standard objectives and the operational performance of the departments. Even though the operational performance service quality of the ISO 9001 certified departments has substantially improved from the perspective of the departments, the customer satisfaction has not notably increased from the perspective of the service receivers.Keywords: iso 9001, customer satisfaction, operational performance, public organization, quality management
Procedia PDF Downloads 40114294 Effect of Mach Number for Gust-Airfoil Interatcion Noise
Authors: ShuJiang Jiang
Abstract:
The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA
Procedia PDF Downloads 7614293 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 17214292 Chinese Doctoral Students in Canada: The Influence of Financial Status and Cultural Cognition on Academic Performance
Authors: Xuefan Li
Abstract:
Parts of Chinese doctoral students in Canada are facing significant academic pressure. The factors contributing to such pressure are diverse, including financial conditions and cultural differences. Students from various academic disciplines have been interviewed to investigate the factors that Chinese students consider when selecting Canada as a destination for doctoral studies, as well as to identify the challenges they face during their academic pursuits and the associated factors influencing their performance. The findings indicate that their motivations to pursue doctoral study in Canada are concluded as both push and pull factors. Financial conditions and cultural differences are critical factors affecting academic performance, with disciplinary variations in the degree of influence observed.Keywords: Chinese doctoral students, financial status, cultural cognition, academic performance
Procedia PDF Downloads 6914291 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 7314290 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 30714289 A Simulated Evaluation of Model Predictive Control
Authors: Ahmed AlNouss, Salim Ahmed
Abstract:
Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)
Procedia PDF Downloads 40614288 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 22714287 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season
Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada
Abstract:
A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model
Procedia PDF Downloads 55414286 Performance of VSAT MC-CDMA System Using LDPC and Turbo Codes over Multipath Channel
Authors: Hassan El Ghazi, Mohammed El Jourmi, Tayeb Sadiki, Esmail Ahouzi
Abstract:
The purpose of this paper is to model and analyze a geostationary satellite communication system based on VSAT network and Multicarrier CDMA system scheme which presents a combination of multicarrier modulation scheme and CDMA concepts. In this study the channel coding strategies (Turbo codes and LDPC codes) are adopted to achieve good performance due to iterative decoding. The envisaged system is examined for a transmission over Multipath channel with use of Ku band in the uplink case. The simulation results are obtained for each different case. The performance of the system is given in terms of Bit Error Rate (BER) and energy per bit to noise power spectral density ratio (Eb/N0). The performance results of designed system shown that the communication system coded with LDPC codes can achieve better error rate performance compared to VSAT MC-CDMA system coded with Turbo codes.Keywords: satellite communication, VSAT Network, MC-CDMA, LDPC codes, turbo codes, uplink
Procedia PDF Downloads 50314285 Embedding Sustainable Design Practices in Architecture Pedagogy: A Study on Ecological Conscious Building Design Techniques
Authors: Pooya Lotfabadi
Abstract:
As the global community struggles with pressing environmental challenges, the field of architecture finds itself at the forefront of sustainability issues. This study evaluates the effectiveness of "ecological conscious building design" courses in architecture education, promoting ecological awareness among future architects. Using the analytic hierarchy process (AHP) as a framework, the study assesses the course’s influence on students' knowledge, skills, and attitudes toward sustainable practices. Through analyzing student feedback, performance assessments, and course outcomes, the research highlights the advantages and limitations of integrating ecological building design into the curriculum. Furthermore, the alignment between the course content and the leadership in energy and environmental design (LEED) certification criteria is explored, evaluating its adequacy in preparing students for environmentally responsible architectural practices. This research offers critical insights for academia and the industry, offering guidance for refining pedagogical approaches, improving curriculum design, and fostering young architects committed to environmentally conscious practices. Ultimately, this study seeks to propel the field of architecture toward a more sustainable and ecologically responsible future.Keywords: AHP, architectural education, ecological design, sustainability
Procedia PDF Downloads 28