Search results for: computational vision
956 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures
Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara
Abstract:
The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.Keywords: IoT, fog computing, task offloading, efficient crow search algorithm
Procedia PDF Downloads 58955 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station
Authors: Wei Liu, Shuquan Wang, Yang Gao
Abstract:
Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance
Procedia PDF Downloads 160954 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.Keywords: co-current, counter-current, Euler-Lagrange model, heat transfer, mass transfer
Procedia PDF Downloads 212953 Research on the Influence of Robot Teaching on the Creativity of Primary and Secondary School Students under the Background of STEM Education
Authors: Chu Liu
Abstract:
With the development of society and the changes of the times, the requirements for the cultivation of learners are different. In the 21st century, STEM education has become a boom in the development of education in various countries, aiming to improve the comprehensive ability of learners in science, technology, engineering, and mathematics. The rise of robot education provides an effective way for STEM education to cultivate computational thinking ability, interdisciplinary ability, problem-solving ability, and teamwork ability. Although robot education has been developed in China for several years, it still lacks a standard curriculum system. This article uses programming software as a platform, through the research and analysis of 'Basic Education Information Technology Curriculum Standards (2012 Edition)', combines with the actual learning situation of learners, tries to conduct teaching project design research, and aims at providing references for the teaching ideas and method of robot education courses. In contemporary society, technological advances increasingly require creativity. Innovative comprehensive talents urgently need a radical and effective education reform to keep up with social changes. So in this context, robot teaching design can be used for students. The tendency of creativity to influence is worth to be verified.Keywords: STEM education, robot teaching, primary and secondary school students, tendency of creativity
Procedia PDF Downloads 120952 Reviving Sustainable Architecture in Non-Wester Culture
Authors: Khaled Asfour
Abstract:
Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster
Procedia PDF Downloads 491951 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 195950 Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole
Authors: Lamla Thungathaa, Conrad Mahlasea, Lisa Ngcebesha
Abstract:
1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules.Keywords: LLM-119, fused rings, azole, structural isomers, detonation properties
Procedia PDF Downloads 92949 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation
Authors: K. Veluraja
Abstract:
Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide
Procedia PDF Downloads 137948 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure
Authors: Andrew R. Winters, Gregor J. Gassner
Abstract:
A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity
Procedia PDF Downloads 343947 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 302946 Computational Analysis and Daily Application of the Key Neurotransmitters Involved in Happiness: Dopamine, Oxytocin, Serotonin, and Endorphins
Authors: Hee Soo Kim, Ha Young Kyung
Abstract:
Happiness and pleasure are a result of dopamine, oxytocin, serotonin, and endorphin levels in the body. In order to increase the four neurochemical levels, it is important to associate daily activities with its corresponding neurochemical releases. This includes setting goals, maintaining social relationships, laughing frequently, and exercising regularly. The likelihood of experiencing happiness increases when all four neurochemicals are released at the optimal level. The achievement of happiness is important because it increases healthiness, productivity, and the ability to overcome adversity. To process emotions, electrical brain waves, brain structure, and neurochemicals must be analyzed. This research uses Chemcraft and Avogadro to determine the theoretical and chemical properties of the four neurochemical molecules. Each neurochemical molecule’s thermodynamic stability is calculated to observe the efficiency of the molecules. The study found that among dopamine, oxytocin, serotonin, alpha-, beta-, and gamma-endorphin, beta-endorphin has the lowest optimized energy of 388.510 kJ/mol. Beta-endorphin, a neurotransmitter involved in mitigating pain and stress, is the most thermodynamically stable and efficient molecule that is involved in the process of happiness. Through examining such properties of happiness neurotransmitters, the science of happiness is better understood.Keywords: happiness, neurotransmitters, positive psychology, dopamine, oxytocin, serotonin, endorphins
Procedia PDF Downloads 154945 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus
Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri
Abstract:
Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.Keywords: natural convection, concentric, eccentric, Nusselt number, annulus
Procedia PDF Downloads 370944 Spatial Analysis as a Tool to Assess Risk Management in Peru
Authors: Josué Alfredo Tomas Machaca Fajardo, Jhon Elvis Chahua Janampa, Pedro Rau Lavado
Abstract:
A flood vulnerability index was developed for the Piura River watershed in northern Peru using Principal Component Analysis (PCA) to assess flood risk. The official methodology to assess risk from natural hazards in Peru was introduced in 1980 and proved effective for aiding complex decision-making. This method relies in part on decision-makers defining subjective correlations between variables to identify high-risk areas. While risk identification and ensuing response activities benefit from a qualitative understanding of influences, this method does not take advantage of the advent of national and international data collection efforts, which can supplement our understanding of risk. Furthermore, this method does not take advantage of broadly applied statistical methods such as PCA, which highlight central indicators of vulnerability. Nowadays, information processing is much faster and allows for more objective decision-making tools, such as PCA. The approach presented here develops a tool to improve the current flood risk assessment in the Peruvian basin. Hence, the spatial analysis of the census and other datasets provides a better understanding of the current land occupation and a basin-wide distribution of services and human populations, a necessary step toward ultimately reducing flood risk in Peru. PCA allows the simplification of a large number of variables into a few factors regarding social, economic, physical and environmental dimensions of vulnerability. There is a correlation between the location of people and the water availability mainly found in rivers. For this reason, a comprehensive vision of the population location around the river basin is necessary to establish flood prevention policies. The grouping of 5x5 km gridded areas allows the spatial analysis of flood risk rather than assessing political divisions of the territory. The index was applied to the Peruvian region of Piura, where several flood events occurred in recent past years, being one of the most affected regions during the ENSO events in Peru. The analysis evidenced inequalities for the access to basic services, such as water, electricity, internet and sewage, between rural and urban areas.Keywords: assess risk, flood risk, indicators of vulnerability, principal component analysis
Procedia PDF Downloads 186943 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 12942 Multiscale Model of Blast Explosion Human Injury Biomechanics
Authors: Raj K. Gupta, X. Gary Tan, Andrzej Przekwas
Abstract:
Bomb blasts from Improvised Explosive Devices (IEDs) account for vast majority of terrorist attacks worldwide. Injuries caused by IEDs result from a combination of the primary blast wave, penetrating fragments, and human body accelerations and impacts. This paper presents a multiscale computational model of coupled blast physics, whole human body biodynamics and injury biomechanics of sensitive organs. The disparity of the involved space- and time-scales is used to conduct sequential modeling of an IED explosion event, CFD simulation of blast loads on the human body and FEM modeling of body biodynamics and injury biomechanics. The paper presents simulation results for blast-induced brain injury coupling macro-scale brain biomechanics and micro-scale response of sensitive neuro-axonal structures. Validation results on animal models and physical surrogates are discussed. Results of our model can be used to 'replicate' filed blast loadings in laboratory controlled experiments using animal models and in vitro neuro-cultures.Keywords: blast waves, improvised explosive devices, injury biomechanics, mathematical models, traumatic brain injury
Procedia PDF Downloads 249941 A Survey and Analysis on Inflammatory Pain Detection and Standard Protocol Selection Using Medical Infrared Thermography from Image Processing View Point
Authors: Mrinal Kanti Bhowmik, Shawli Bardhan Jr., Debotosh Bhattacharjee
Abstract:
Human skin containing temperature value more than absolute zero, discharges infrared radiation related to the frequency of the body temperature. The difference in infrared radiation from the skin surface reflects the abnormality present in human body. Considering the difference, detection and forecasting the temperature variation of the skin surface is the main objective of using Medical Infrared Thermography(MIT) as a diagnostic tool for pain detection. Medical Infrared Thermography(MIT) is a non-invasive imaging technique that records and monitors the temperature flow in the body by receiving the infrared radiated from the skin and represent it through thermogram. The intensity of the thermogram measures the inflammation from the skin surface related to pain in human body. Analysis of thermograms provides automated anomaly detection associated with suspicious pain regions by following several image processing steps. The paper represents a rigorous study based survey related to the processing and analysis of thermograms based on the previous works published in the area of infrared thermal imaging for detecting inflammatory pain diseases like arthritis, spondylosis, shoulder impingement, etc. The study also explores the performance analysis of thermogram processing accompanied by thermogram acquisition protocols, thermography camera specification and the types of pain detected by thermography in summarized tabular format. The tabular format provides a clear structural vision of the past works. The major contribution of the paper introduces a new thermogram acquisition standard associated with inflammatory pain detection in human body to enhance the performance rate. The FLIR T650sc infrared camera with high sensitivity and resolution is adopted to increase the accuracy of thermogram acquisition and analysis. The survey of previous research work highlights that intensity distribution based comparison of comparable and symmetric region of interest and their statistical analysis assigns adequate result in case of identifying and detecting physiological disorder related to inflammatory diseases.Keywords: acquisition protocol, inflammatory pain detection, medical infrared thermography (MIT), statistical analysis
Procedia PDF Downloads 343940 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses
Authors: Matthew Baucum
Abstract:
With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.Keywords: FMRI, machine learning, meta-analysis, text analysis
Procedia PDF Downloads 449939 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 94938 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies
Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr
Abstract:
Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool
Procedia PDF Downloads 232937 L2 Learning and Teaching through Digital Tools
Authors: Bâlc Denisa-Maria
Abstract:
This paper aims to present some ways of preserving a language heritage in the global era. Teaching a second language to foreign students does not imply only teaching the grammar and the vocabulary in order to reach the 4 skills, but it means constant work on developing strategies to make the students aware of the heritage that the language they learn has. Teachers and professors need to be aware of the fact that language is in constant change, they need to adjust their techniques to the digital era, but they also have to be aware of the changes, the good and the bad parts of globalizations. How is it possible to preserve the patrimony of a certain language in a globalized era? What transformations does a language face in time? What does it mean to preserve the heritage of a language through L2 teaching? What makes a language special? What impact does it have on the foreign students? How can we, as teachers, preserve the heritage of our language? Would it be everything about books, films, music, cultural events or what else? How is it possible to include digital programs in your teaching and preserving the patrimony of a language at the same time? How does computational linguistics help us in teaching a certain language? All these questions will be tackled during the essay, with special accent on the definition of a language heritage, the new perspectives for teachers/ professors, everything in a multimodal and complex way of presenting the context. The objectives of this research are: - to present some ways of preserving the heritage of a certain language against globalization - to illustrate what preservation means for L2 teaching - to encourage teachers to be aware of their language patrimony The main contributions of my research are on moving the discussion of preserving a certain language patrimony in the context of L2 teaching.Keywords: preservation, globalization, language heritage, L2 teaching
Procedia PDF Downloads 62936 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam
Abstract:
Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.Keywords: water hammer, hydraulic transient, pipe systems, characteristics method
Procedia PDF Downloads 136935 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior
Authors: Burak Bal
Abstract:
Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure
Procedia PDF Downloads 154934 Improving Learning and Teaching of Software Packages among Engineering Students
Authors: Sara Moridpour
Abstract:
To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment
Procedia PDF Downloads 115933 A Comparative Study between FEM and Meshless Methods
Authors: Jay N. Vyas, Sachin Daxini
Abstract:
Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods
Procedia PDF Downloads 389932 Comprehensive Review of Ultralightweight Security Protocols
Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj
Abstract:
The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP
Procedia PDF Downloads 82931 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 299930 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 136929 Control of a Plane Jet Spread by Tabs at the Nozzle Exit
Authors: Makito Sakai, Takahiro Kiwata, Takumi Awa, Hiroshi Teramoto, Takaaki Kono, Kuniaki Toyoda
Abstract:
Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models.Keywords: plane jet, flow control, tab, flow measurement, numerical simulation
Procedia PDF Downloads 335928 Matching Law in Autoshaped Choice in Neural Networks
Authors: Giselle Maggie Fer Castañeda, Diego Iván González
Abstract:
The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.Keywords: matching law, neural networks, computational models, behavioral sciences
Procedia PDF Downloads 74927 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach
Authors: Dhawal Ladani
Abstract:
Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube
Procedia PDF Downloads 307