Search results for: defect detection
3638 Detection of Parkinsonian Freezing of Gait
Authors: Sang-Hoon Park, Yeji Ho, Gwang-Moon Eom
Abstract:
Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods.Keywords: freezing of gait, detection, Parkinson's disease, time-domain method
Procedia PDF Downloads 4443637 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 2413636 Leukocyte Detection Using Image Stitching and Color Overlapping Windows
Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan
Abstract:
Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection
Procedia PDF Downloads 3103635 Electrical Dault Detection of Photovoltaic System: A Short-Circuit Fault Case
Authors: Moustapha H. Ibrahim, Dahir Abdourahman
Abstract:
This document presents a short-circuit fault detection process in a photovoltaic (PV) system. The proposed method is developed in MATLAB/Simulink. It determines whatever the size of the installation number of the short circuit module. The proposed algorithm indicates the presence or absence of an abnormality on the power of the PV system through measures of hourly global irradiation, power output, and ambient temperature. In case a fault is detected, it displays the number of modules in a short circuit. This fault detection method has been successfully tested on two different PV installations.Keywords: PV system, short-circuit, fault detection, modelling, MATLAB-Simulink
Procedia PDF Downloads 2323634 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection
Procedia PDF Downloads 4523633 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.Keywords: collision identification, fixed time, convex polyhedra, neural network, AMAXNET
Procedia PDF Downloads 4223632 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 4003631 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.Keywords: adaptive estimation, fault detection, GNSS, residual
Procedia PDF Downloads 5733630 Optical Flow Direction Determination for Railway Crossing Occupancy Monitoring
Authors: Zdenek Silar, Martin Dobrovolny
Abstract:
This article deals with the obstacle detection on a railway crossing (clearance detection). Detection is based on the optical flow estimation and classification of the flow vectors by K-means clustering algorithm. For classification of passing vehicles is used optical flow direction determination. The optical flow estimation is based on a modified Lucas-Kanade method.Keywords: background estimation, direction of optical flow, K-means clustering, objects detection, railway crossing monitoring, velocity vectors
Procedia PDF Downloads 5183629 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet
Authors: Ma Lei-Lei, Zhou You
Abstract:
Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.Keywords: convolutional neural network, transformer, feature pyramid networks, loss function
Procedia PDF Downloads 973628 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1573627 Intelligent Driver Safety System Using Fatigue Detection
Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen
Abstract:
Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.Keywords: drowsiness, eye closure, fatigue detection, yawn detection
Procedia PDF Downloads 2933626 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform
Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier
Abstract:
The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing
Procedia PDF Downloads 1963625 Finite Element Simulation for Preliminary Study on Microorganism Detection System
Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun
Abstract:
A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.Keywords: microorganism, microfluidic, total internal reflection, lab on chip
Procedia PDF Downloads 2773624 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1423623 Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects
Authors: K. A.Veselova, N. V.Gromova, I. N.Antonova, I. N. Kalakutskii
Abstract:
There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result.Keywords: anaplastology, facial prosthesis, implant-retained facial prosthesis., maxillofacil prosthese
Procedia PDF Downloads 1143622 Hand Detection and Recognition for Malay Sign Language
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara
Abstract:
Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.Keywords: hand detection, hand gesture, hand recognition, sign language
Procedia PDF Downloads 3063621 Accelerated Expansion of a Matter-Antimatter Universe and Gravity as an Electromagnetic Force
Authors: Maarten J. Van der Burgt
Abstract:
A universe containing matter and antimatter can only exist when matter and antimatter repel each other. Such a system, where like attracts like and like repels unlike, will always expand. Calculations made for such a symmetric universe demonstrate that the expansion is consistent with Hubble’s law, the observed increase in the expansion velocity with time, the initial high acceleration and the foam structure of the universe. Conversely, these observations can be considered as proof for a symmetrical universe and for antimatter possessing a negative gravitational mass. A second proof can be found by reinterpreting the behavior of relativistic moving charged particles. Attributing their behavior to a charge defect of √(1-v2/c2) instead of to a mass defect of 1/√(1-v2/c2) makes it plausible that gravitation is an electromagnetic force, as already suggested by Feynman. This would automatically imply that antimatter has a negative gravitational mass. These proofs underpin the untenability of the Weak Equivalence Principle which states that in a gravitational field all structure less point-like particles follow the same path.Keywords: celestial mechanics, cosmology, gravitation astrophysics, origin of structure, miscellaneous (matter and antimatter)
Procedia PDF Downloads 2283620 Evaluating Gallein Dye as a Beryllium Indicator
Authors: Elise M. Shauf
Abstract:
Beryllium can be found naturally in some fruits and vegetables (carrots, garden peas, kidney beans, pears) at very low concentrations, but is typically not clinically significant due to the low-level exposure and limited absorption of beryllium by the stomach and intestines. However, acute or chronic beryllium exposure can result in harmful toxic and carcinogenic biological effects. Beryllium can be both a workplace hazard and an environmental pollutant, therefore determining the presence of beryllium at trace levels can be essential to protect workers as well as the environment. Analysis of gallein, C₂₀H₁₂O₇, to determine if it is usable as a fluorescent dye for beryllium detection. The primary detection method currently in use includes hydroxybenzoquinoline sulfonates (HBQS), for which alternative indicators are desired. Unfortunately, gallein does not have the desired aspects needed as a dye for beryllium detection due to the peak shift properties.Keywords: beryllium detection, fluorescent, gallein dye, indicator, spectroscopy
Procedia PDF Downloads 1423619 Supply Chain Analysis with Product Returns: Pricing and Quality Decisions
Authors: Mingming Leng
Abstract:
Wal-Mart has allocated considerable human resources for its quality assurance program, in which the largest retailer serves its supply chains as a quality gatekeeper. Asda Stores Ltd., the second largest supermarket chain in Britain, is now investing £27m in significantly increasing the frequency of quality control checks in its supply chains and thus enhancing quality across its fresh food business. Moreover, Tesco, the largest British supermarket chain, already constructed a quality assessment center to carry out its gatekeeping responsibility. Motivated by the above practices, we consider a supply chain in which a retailer plays the gatekeeping role in quality assurance by identifying defects among a manufacturer's products prior to selling them to consumers. The impact of a retailer's gatekeeping activity on pricing and quality assurance in a supply chain has not been investigated in the operations management area. We draw a number of managerial insights that are expected to help practitioners judiciously consider the quality gatekeeping effort at the retail level. As in practice, when the retailer identifies a defective product, she immediately returns it to the manufacturer, who then replaces the defect with a good quality product and pays a penalty to the retailer. If the retailer does not recognize a defect but sells it to a consumer, then the consumer will identify the defect and return it to the retailer, who then passes the returned 'unidentified' defect to the manufacturer. The manufacturer also incurs a penalty cost. Accordingly, we analyze a two-stage pricing and quality decision problem, in which the manufacturer and the retailer bargain over the manufacturer's average defective rate and wholesale price at the first stage, and the retailer decides on her optimal retail price and gatekeeping intensity at the second stage. We also compare the results when the retailer performs quality gatekeeping with those when the retailer does not. Our supply chain analysis exposes some important managerial insights. For example, the retailer's quality gatekeeping can effectively reduce the channel-wide defective rate, if her penalty charge for each identified de-fect is larger than or equal to the market penalty for each unidentified defect. When the retailer imple-ments quality gatekeeping, the change in the negotiated wholesale price only depends on the manufac-turer's 'individual' benefit, and the change in the retailer's optimal retail price is only related to the channel-wide benefit. The retailer is willing to take on the quality gatekeeping responsibility, when the impact of quality relative to retail price on demand is high and/or the retailer has a strong bargaining power. We conclude that the retailer's quality gatekeeping can help reduce the defective rate for consumers, which becomes more significant when the retailer's bargaining position in her supply chain is stronger. Retailers with stronger bargaining powers can benefit more from their quality gatekeeping in supply chains.Keywords: bargaining, game theory, pricing, quality, supply chain
Procedia PDF Downloads 2773618 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data
Authors: Junyou Shi, Weiwei Cui
Abstract:
Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.Keywords: fault detection, fault isolation, testability modeling, BIT
Procedia PDF Downloads 3343617 Isothermal Solid-Phase Amplification System for Detection of Yersinia pestis
Authors: Olena Mayboroda, Angel Gonzalez Benito, Jonathan Sabate Del Rio, Marketa Svobodova, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan, Ioanis Katakis
Abstract:
DNA amplification is required for most molecular diagnostic applications but conventional PCR has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the Recombinase Polymerase Amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 hour at a constant temperature of 37oC. Single-stranded and double-stranded DNA sequences were detected achieving detection limits of 4.04*10-13 M and 3.14*10-16 M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets.Keywords: recombinase polymerase amplification, Yersinia pestis, solid-phase detection, ELONA
Procedia PDF Downloads 3033616 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 5273615 Saliency Detection Using a Background Probability Model
Authors: Junling Li, Fang Meng, Yichun Zhang
Abstract:
Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.Keywords: visual saliency, background probability, boundary knowledge, background priors
Procedia PDF Downloads 4293614 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.Keywords: corner detection, optical flow, epipolar geometry, RANSAC
Procedia PDF Downloads 4063613 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 1593612 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking
Procedia PDF Downloads 4573611 First Principle-Based Dft and Microkinetic Simulation of Co-Conversion of Carbon Dioxide and Methane on Single Iridium Atom Doped Hematite with Surface Oxygen Defect
Authors: Kefale W. Yizengaw, Delele Worku Ayele, Jyh-Chiang Jiang
Abstract:
The catalytic co-conversion of CO₂ and CH₄ to value-added compounds has become one of the promising approaches to addressing global climate change by having valuable fossil fuels. Thedirect co-conversion of CO₂ and CH₄ to value-added compounds is attractive but tremendously challenging because of both molecules' thermodynamic stability and kinetic inertness. In the present study, a single iridium atom doped and a single oxygen atom defect hematite (110)surface model catalyst, which can comprehend direct C–O coupling based on simultaneous activation of CO2 and CH4 was studied using density functional theory plus U (DFT + U)calculations. The presence of dual active sites on the Ir/Fe₂O₃(110)-OV surface catalyst enablesCO₂ activation on the Ir site and CH₄ activation at the defect site. The electron analysis for the theco-adsorption of CO₂ and CH₄ deals with the electron redistribution on the surface and clearly shows the synergistic effect for simultaneous CO₂ and CH₄ activation on Ir/α- Fe₂O₃(110)-OVsurface. The microkinetic analysis shows that the dissociation of CH4 to CH3 * and H* plays an excellent role in the C–O coupling. The coverage analysis for the intermediate products of the microkinetic simulation results indicates that C–O coupling is the reaction limiting step. Finally, after the CH₃O* intermediate product species is produced, the radical hydrogen species spontaneously diffuse to the CH3O* intermediate product to form methanol at around 490 [K]. The present work provides mechanistic and kinetic insights into the direct C–O coupling of CO₂and CH₄, which could help design more-efficient catalysts.Keywords: co-conversion, C–O coupling, doping, oxygen vacancy, microkinetic
Procedia PDF Downloads 1153610 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 2713609 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 53