Search results for: bi-directional long and short-term memory networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9540

Search results for: bi-directional long and short-term memory networks

7530 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 317
7529 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt

Authors: Mohamed Eladham Fadl M. E. Fadl

Abstract:

In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.

Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques

Procedia PDF Downloads 338
7528 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 48
7527 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius

Authors: B. Seetanah, H. Neeliah

Abstract:

This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.

Keywords: energy, emissions, economic growth, export, VECM

Procedia PDF Downloads 479
7526 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 118
7525 Delegation or Assignment: Registered Nurses’ Ambiguity in Interpreting Their Scope of Practice in Long Term Care Settings

Authors: D. Mulligan, D. Casey

Abstract:

Introductory Statement: Delegation is when a registered nurse (RN) transfers a task or activity that is normally within their scope of practice to another person (delegatee). RN delegation is common practice with unregistered staff, e.g., student nurses and health care assistants (HCAs). As the role of the HCA is increasingly embedded as a direct care and support role, especially in long-term residential care for older adults, there is RN uncertainty as to their role as a delegator. The assignment is when a task is transferred to a person that is within the role specification of the delegatee. RNs in long-term care (LTC) for older people are increasingly working in teams where there are less RNs and more HCAs providing direct care to the residents. The RN is responsible and accountable for their decision to delegate and assign tasks to HCAs. In an interpretive, multiple case studies to explore how delegation of tasks by RNs to HCAs occurred in long-term care settings in Ireland the importance of the RN understanding their scope of practice emerged. Methodology: Focus group interviews and individual interviews were undertaken as part of a multiple case study. Both cases, anonymized as Case A and Case B, were within the public health service in Ireland. The case study sites were long-term care settings for older adults located in different social care divisions, and in different geographical areas. Four focus group interviews with staff nurses and three individual interviews with CNMs were undertaken. The interactive data analysis approach was the analytical framework used, with within-case and cross-case analysis. The theoretical lens of organizational role theory, applying the role episode model (REM), was used to understand, interpret, and explain the findings. Study Findings: RNs and CNMs understood the role of the nurse regulator and the scope of practice. RNs understood that the RN was accountable for the care and support provided to residents. However, RNs and CNM2s could not describe delegation in the context of their scope of practice. In both cases, the RNs did not have a standardized process for assessing HCA competence to undertake nursing tasks or interventions. RNs did not routinely supervise HCAs. Tasks were assigned and not delegated. There were differences between the cases in relation to understanding which nursing tasks required delegation. HCAs in Case A undertook clinical vital sign assessments and documentation. HCAs in Case B did not routinely undertake these activities. Delegation and assignment were influenced by the organizational factors, e.g., model of care, absence of delegation policies, inadequate RN education on delegation, and a lack of RN and HCA role clarity. Concluding Statement: Nurse staffing levels and skill mix in long-term care settings continue to change with more HCAs providing more direct care and support. With decreasing RN staffing levels RNs will be required to delegate and assign more direct care to HCAs. There is a requirement to distinguish between RN assignment and delegation at policy, regulation, and organizational levels.

Keywords: assignment, delegation, registered nurse, scope of practice

Procedia PDF Downloads 153
7524 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 8
7523 Long-Persistent Luminescent MAl2O4:Eu;Dy Phoshors Synthesized by Combustion

Authors: Yusuf Ziya Halefoğlu

Abstract:

Phosphorescence, classically, excitation effects (radiation, electron beam, electric field, temperature, etc.) is the name given after the elimination of materials that glow in the visible region. This event continues to glow after the elimination of the effect of excitation is called phosphorescence. In this study were synthesized by the method of the combustion lanthanide doped alkaline earth aluminates. High temperature and long reaction time required and the sol-gel method of combustion according to the methods of solid state synthesis temperature lower than the short reaction time, a small particle size, convenience, and is superior in terms of being secured. Their microstructures and its effect on the photoluminescence properties were studied. Phosphorescence is derived in the dark when produced materials are held in sunlight or under ultraviolet light typically at 365-520 nm wavelength range. In this study, the optimal ratio of rare earth elements, in terms of brightness and glow duration was examined by SEM, XRD and photoluminescence analysis.

Keywords: persistence luminescence, phosphorescence, trap depth, combustion method

Procedia PDF Downloads 240
7522 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 9
7521 Growth of Public Listed Construction Companies in Malaysia

Authors: M. C. Theong, F. L. Ang, G. J. Muga

Abstract:

Growth of firms is influenced by environmental changes such as the global and national economy. On the other hand, it indicates the economic situation of a country. Therefore, it is imperative for firms to be sensitive to changes and to stay competitive and remain compatible with the environment. The Malaysian construction industry is prone to environmental changes due to its complexity. In order to survive in the construction industry, focus on the development of the firms themselves to achieve long term their long term goals is vital besides maximizing profits. The objective of this paper is to measure growth of the public listed construction companies in Malaysia and to investigate the development of the companies with highest, moderate and lowest growth. Growth is measured based on the companies' sales between year 2008 and 2012 collected via secondary data collection method. Findings show that the highest average growth created is 235.20 % while the lowest average growth is -22.75%. The construction companies remained active in the construction industry by implementing different sets of strategies and involving in several types of construction projects.

Keywords: growth, Malaysian construction industry, public listed companies, sales

Procedia PDF Downloads 382
7520 A Reduced Distributed Sate Space for Modular Petri Nets

Authors: Sawsen Khlifa, Chiheb AMeur Abid, Belhassan Zouari

Abstract:

Modular verification approaches have been widely attempted to cope with the well known state explosion problem. This paper deals with the modular verification of modular Petri nets. We propose a reduced version for the modular state space of a given modular Petri net. The new structure allows the creation of smaller modular graphs. Each one draws the behavior of the corresponding module and outlines some global information. Hence, this version helps to overcome the explosion problem and to use less memory space. In this condensed structure, the verification of some generic properties concerning one module is limited to the exploration of its associated graph.

Keywords: distributed systems, modular verification, petri nets, state space explosition

Procedia PDF Downloads 115
7519 Quick Response Codes in Physio: A Simple Click to Long-Term Oxygen Therapy Education

Authors: K. W. Lee, C. M. Choi, H. C. Tsang, W. K. Fong, Y. K. Cheng, L. Y. Chan, C. K. Yuen, P. W. Lau, Y. L. To, K. C. Chow

Abstract:

QR (Quick Response) Code is a matrix barcode. It enables users to open websites, photos and other information with mobile devices by just snapping the code. In usual Long Term Oxygen Therapy arrangement, piles of LTOT related information like leaflets from different oxygen service providers are given to patients to choose an appropriate plan according to their needs. If these printed materials are transformed into electronic format (QR Code), it would be more environmentally-friendly. More importantly, electronic materials including LTOT equipment operation and dyspnoea relieving techniques also empower patients in long-term disease management. The objective to this study is to investigate the effect of QR code in patient education on new LTOT users. This study was carried out in medical wards of North District Hospital. Adult patients and relatives who followed commands, were able to use smartphones with internet services and required LTOT arrangement on hospital discharge were recruited. In LTOT arrangement, apart from the usual LTOT education booklets which included patients’ personal information (e.g. oxygen titration and six-minute walk test results etc.), extra leaflets consisted of 1. QR codes of LTOT plans from different oxygen service providers, 2. Education materials of dyspnoea management and 3. Instructions on LTOT equipment operation were given. Upon completion of LTOT arrangement, a questionnaire about the use of QR code on patient education was filled in by patients or relatives. A total of 10 new LTOT users were recruited from November 2017 to January 2018. Initially, 70% of them did not know anything about the QR code, but all of them understood its operation after a simple demonstration. 70% of them agreed that it was convenient to use (20% strongly agree, 40% agree, 10% somewhat agree). 80% of them agreed that QR code could facilitate the retrieval of more LTOT related information (10% strongly agree, 70% agree) while 90% agreed that we should continue delivering QR code leaflets to new LTOT users in the future (30% strongly agree, 40% agree, 20% somewhat agree). It is proven that QR code is a convenient and environmentally-friendly tool to deliver information. It is also relatively easy to be introduced to new users. It has received welcoming feedbacks from current users.

Keywords: long-term oxygen therapy, physiotherapy, patient education, QR code

Procedia PDF Downloads 148
7518 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients

Authors: Elena Carcano, James Ball

Abstract:

This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.

Keywords: hierarchical process, strategic plan, water emergency conditions, water supply

Procedia PDF Downloads 160
7517 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 118
7516 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 310
7515 A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 264
7514 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
7513 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: parallel 2-opt, double links, large scale TSP, GPU

Procedia PDF Downloads 625
7512 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 178
7511 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 70
7510 Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol

Authors: Tripti Nayak, R. K. Bajpai

Abstract:

An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production.

Keywords: long term effect, FYM, green manure, infiltration rate, soil health, crop productivity, vertisol

Procedia PDF Downloads 364
7509 The Impact of Insomnia on the Academic Performance of Mexican Medical Students: Gender Perspective

Authors: Paulina Ojeda, Damaris Estrella, Hector Rubio

Abstract:

Insomnia is a disorder characterized by difficulty falling asleep, staying asleep or both. It negatively affects the life quality of people, it hinders the concentration, attention, memory, motor skills, among other abilities that complicate work or learning. Some studies show that women are more susceptible to insomnia. Medicine curricula usually involve a great deal of theoretical and memory content, especially in the early years of the course. The way to accredit a university course is to demonstrate the level of competence or acquired knowledge. In Mexico the most widely used form of measurement is written exams, with numerical scales results. The prevalence of sleep disorders in university students is usually high, so it is important to know if insomnia has an effect on school performance in men and women. A cross-sectional study was designed that included a probabilistic sample of 118 regular students from the School of Medicine of the Autonomous University of Yucatan, Mexico. All on legally age. The project was authorized by the School of Medicine and all the ethical implications of the case were monitored. Participants completed anonymously the following questionnaires: Pittsburgh Sleep Quality Index, Insomnia Severity Index, AUDIT test, epidemiological and clinical data. Academic performance was assessed by the average number of official grades earned on written exams, as well as the number of approved or non-approved courses. These data were obtained officially through the corresponding school authorities. Students with at least one unapproved course or average less than 70 were considered to be poor performers. With all courses approved and average between 70-79 as regular performance and with an average of 80 or higher as a good performance. Statistical analysis: t-Student, difference of proportions and ANOVA. 65 men with a mean age of 19.15 ± 1.60 years and 53 women of 18.98 ± 1.23 years, were included. 96% of the women and 78.46% of the men sleep in the family home. 16.98% of women and 18.46% of men consume tobacco. Most students consume caffeinated beverages. 3.7% of the women and 10.76% of the men complete criteria of harmful consumption of alcohol. 98.11% of the women and 90.76% of the men are perceived with poor sleep quality. Insomnia was present in 73% of women and 66% of men. Women had higher levels of moderate insomnia (p=0.02) compared to men and only one woman had severe insomnia. 50.94% of the women and 44.61% of the men had poor academic performance. 18.86% of women and 27% of men performed well. Only in the group of women we found a significant association between poor performance with mild (p= 0.0035) and moderate (p=0.031) insomnia. The medical students reported poor sleep quality and insomnia. In women, levels of insomnia were associated with poor academic performance.

Keywords: scholar-average, sex, sleep, university

Procedia PDF Downloads 296
7508 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
7507 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 93
7506 A Long Range Wide Area Network-Based Smart Pest Monitoring System

Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee

Abstract:

This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.

Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II

Procedia PDF Downloads 352
7505 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
7504 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 493
7503 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 504
7502 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily

Authors: Siming Xie

Abstract:

In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).

Keywords: homophily, multidimension, social networks, friendships

Procedia PDF Downloads 170
7501 Life-Saving Design Strategies for Nursing Homes and Long-Term Care Facilities

Authors: Jason M. Hegenauer, Nicholas Fucci

Abstract:

In the late 1990s, a major deinstitutionalization movement of elderly patients took place, since which, the design of long-term care facilities has not been adequately analyzed in the United States. Over the course of the last 25 years, major innovations in construction methods, technology, and medicine have been developed, drastically changing the landscape of healthcare architecture. In light of recent events, and the expected increase in elderly populations with the aging of the baby-boomer generation, it is evident that reconsideration of these facilities is essential for the proper care of aging populations. The global response has been effective in stifling this pandemic; however, widespread disease still poses an imminent threat to the human race. Having witnessed the devastation Covid-19 has reaped throughout nursing homes and long-term care facilities, it is evident that the current strategies for protecting our most vulnerable populations are not enough. Light renovation of existing facilities and previously overlooked considerations for new construction projects can drastically lower the risk at nursing homes and long-term care facilities. A reconfigured entry sequence supplements several of the features which have been long-standing essentials of the design of these facilities. This research focuses on several aspects identified as needing improvement, including indoor environment quality, security measures incorporated into healthcare architecture and design, and architectural mitigation strategies for sick building syndrome. The results of this study have been compiled as 'best practices' for the design of future healthcare construction projects focused on the health, safety, and quality of life of the residents of these facilities. These design strategies, which can easily be implemented through renovation of existing facilities and new construction projects, minimize risk of infection and spread of disease while allowing routine functions to continue with minimal impact, should the need for future lockdowns arise. Through the current lockdown procedures, which were implemented during the Covid-19 pandemic, isolation of residents has caused great unrest and worry for family members and friends as they are cut off from their loved ones. At this time, data is still being reported, leaving infection and death rates inconclusive; however, recent projections in some states list long-term care facility deaths as high as 60% of all deaths in the state. The population of these facilities consists of residents who are elderly, immunocompromised, and have underlying chronic medical conditions. According to the Centers for Disease Control, these populations are particularly susceptible to infection and serious illness. The obligation to protect our most vulnerable population cannot be overlooked, and the harsh measures recently taken as a response to the Covid-19 pandemic prove that the design strategies currently utilized for doing so are inadequate.

Keywords: building security, healthcare architecture and design, indoor environment quality, new construction, sick building syndrome, renovation

Procedia PDF Downloads 98