Search results for: nano collagen molecules
384 Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient
Authors: Ahmad Rasyadan Arshad, A. Rahman A. Jamal, N. Mohamed Ibrahim, Nor Azian Abdul Murad
Abstract:
Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size.Keywords: early onset PD, late onset PD, microRNA (miRNA), microarray
Procedia PDF Downloads 259383 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 160382 Tailoring and Characterization of Lithium Manganese Ferrite- Polypyrrole Nanocomposite (LixMnxFe₂O₄-PPY) to Evaluate Their Performance as an Energy Storage Device
Authors: Muhammad Waheed Mushtaq, Shahid bashir, Atta Ur Rehman
Abstract:
In the past decade, the growing demand for capital and the increased utilization of supercapacitors reflect advancements in energy-producing systems and energy storage devices. Metal oxides and ferrites have emerged as promising candidates for supercapacitors and batteries. In our current study, we synthesized Lithium manganese nanoferrite, denoted as LixMnxFe₂O₄, using the hydrothermal technique. Subsequently, we treated it with sodium dodecyl benzene sulphonate (SDBS) surfactant to create nanocomposites of Lithium manganese nano ferrite (LMFe) with poly pyrrole (LixMnxFe₂O₄-PPY). We employed Powder X-ray diffraction (XRD) to confirm the crystalline nature and spinel phase structure of LMFe nanoparticles, which exhibited a single-phase crystal structure, indicating sample purity. To assess the surface topography, morphology, and grain size of both synthesized LixMnxFe₂O₄ and LixMnxFe₂O₄-PPY, we used atomic force microscopy and scanning electron microscopy (SEM). The average particle size of pure ferrite was found to be 54 nm, while that of its nanocomposite was 71 nm. Energy dispersive X-ray (EDX) analysis confirmed the presence of all required elements, including Li, Mn, Fe, and O, in the appropriate proportions. Saturation magnetization (32.69 emu), remanence (Mr), and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM). To assess the electrochemical performance of the material, we conducted Cyclic Voltammetry (CV) measurements for both pure LMFe and LMFe-PPY. The CV results for LMFe-PPY demonstrated that specific capacitance decreased with increasing scan rate while the area of the current-voltage loop increased. These findings are promising for the development of supercapacitors and lithium-ion batteries (LIBs).Keywords: lithium manganese ferrite, poly pyrrole, nanocomposites, cyclic voltammetry, cathode
Procedia PDF Downloads 72381 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission
Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos
Abstract:
Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method
Procedia PDF Downloads 40380 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application
Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro
Abstract:
In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype
Procedia PDF Downloads 160379 Phytochemical Content and Bioactive Properties of Wheat Sprouts
Authors: Jasna Čanadanović-Brunet, Lidija Jevrić, Gordana Ćetković, Vesna Tumbas Šaponjac, Jelena Vulić, Slađana Stajčić
Abstract:
Wheat contains high amount of nutrients such as dietary fiber, resistant starch, vitamins, minerals and microconstituents, which are building blocks of body tissues, but also help in the prevention of diseases such as cardiovascular disease, cancer and diabetes. Sprouting enhances the nutritional value of whole wheat through biosynthesis of tocopherols, polyphenols and other valuable phytochemicals. Since the nutritional and sensory benefits of germination have been extensively documented, using of sprouted grains in food formulations is becoming a trend in healthy foods. The present work addressed the possibility of using freeze-dried sprouted wheat powder, obtained from spelt-wheat cv. ‘Nirvana’ (Triticum spelta L.) and winter wheat cv. ‘Simonida’ (Triticum aestivum L. ssp. vulgare var. lutescens), as a source of phytochemicals, to improve the functional status of the consumer. The phytochemicals' content (total polyphenols, flavonoids, chlorophylls and carotenoids) and biological activities (antioxidant activity on DPPH radicals and antiinflammatory activity) of sprouted wheat powders were assessed spectrophotometrically. The content of flavonoids (216.52 mg RE/100 g), carotenoids (22.84 mg β-carotene/100 g) and chlorophylls (131.23 mg/100 g), as well as antiinflammatory activity (EC50=3.70 mg/ml) was found to be higher in sprouted spelt-wheat powder, while total polyphenols (607.21 mg GAE/100 g) and antioxidant activity on DDPPH radicals (EC50=0.27 mmol TE/100 g) was found to be higher in sprouted winter wheat powders. Simulation of gastro-intestinal digestion of sprouted wheat powders clearly shows that intestinal digestion caused a higher release of polyphenols than gastric digestion for both samples, which indicates their higher bioavailability in the colon. The results of the current study have shown that wheat sprouts can provide a high content of phytochemicals and considerable bioactivities. Moreover, data reported show that they contain a unique pattern of bioactive molecules, which make these cereal sprouts attractive functional foods for a health-promoting diet.Keywords: wheat, sprouts, phytochemicals, bioactivity
Procedia PDF Downloads 466378 Dipeptide Functionalized Nanoporous Anodic Aluminium Oxide Membrane for Capturing Small Molecules
Authors: Abdul Mutalib Md Jani, Abdul Hadi Mahmud, Mohd Tajuddin Mohd Ali
Abstract:
The rapid growth of interest in surface modification of nanostructures materials that exhibit improved structural and functional properties is attracting more researchers. The unique properties of highly ordered nanoporous anodic aluminium oxide (NAAO) membrane have been proposed as a platform for biosensing applications. They exhibit excellent physical and chemical properties with high porosity, high surface area, tunable pore sizes and excellent chemical resistance. In this study, NAAO was functionalized with 3-aminopropyltriethoxysilane (APTES) to prepared silane-modified NAAO. Amine functional groups are formed on the surface of NAAO during silanization and were characterized using Fourier Transform Infrared spectroscopy (FTIR). The synthesis of multi segment of peptide on NAAO surfaces can be realized by changing the surface chemistry of the NAAO membrane via click chemistry. By click reactions, utilizing alkyne terminated with amino group, various peptides tagged on NAAO can be envisioned from chiral natural or unnatural amino acids using standard coupling methods (HOBt, EDCI and HBTU). This strategy seemly versatile since coupling strategy of dipeptide with another amino acids, leading to tripeptide, tetrapeptide or pentapeptide, can be synthesized without purification. When an appropriate terminus is selected, multiple segments of amino acids can be successfully synthesized on the surfaces. The immobilized NAAO should be easily separated from the reaction medium by conventional filtration, thus avoiding complicated purification methods. Herein, we proposed to synthesize multi fragment peptide as a model for capturing and attaching various small biomolecules on NAAO surfaces and can be also applied as biosensing device, drug delivery systems and biocatalyst.Keywords: nanoporous anodic aluminium oxide, silanization, peptide synthesise, click chemistry
Procedia PDF Downloads 283377 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts
Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa
Abstract:
Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond
Procedia PDF Downloads 67376 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 267375 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike
Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability
Procedia PDF Downloads 82374 Studies of Single Nucleotide Polymorphism of Proteosomal Gene Complex and Their Association with HBV Infection Risk in India
Authors: Jasbir Singh, Devender Kumar, Davender Redhu, Surender Kumar, Vandana Bhardwaj
Abstract:
Single Nucleotide polymorphism (SNP) of proteosomal gene complex is involved in the pathogenesis of hepatitis B Virus (HBV) infection. Some of such proteosomal gene complex are large multifunctional proteins (LMP) and antigen associated transporters that help in antigen presentation. Both are involved in intracellular processing and presentation of viral antigens in association with Major Histocompatability Complex (MHC) Class I molecules. A total of hundred each of hepatitis B virus infected and control samples from northern India were studied. Genomic DNA was extracted from all studied samples and PCR-RFLP method was used for genotyping at different positions of LMP genes. Genotypes at a given position were inferred from the pattern of bands and genotype frequencies and haplotype frequencies were also calculated. Homozygous SNP {A>C} was observed at codon 145 of LMP7 gene and having a protective role against HBV as there was statistically significant high distribution of this SNP among controls than cases. Heterozygous SNP {A>C} was observed at codon 145 of LMP7 gene and made individuals more susceptible to HBV infection as there was statistically significant high distribution of this SNP among cases than control. SNP {T>C} was observed at codon 60 of LMP2 gene but statistically significant differences were not observed among controls and cases. For codon 145 of LMP7 and codon 60 of LMP2 genes, four haplotypes were constructed. Haplotype I (LMP2 ‘C’ and LMP7 ‘A’) made individuals carrying it more susceptible to HBV infection as there was statistically significant high distribution of this haplotype among cases than control. Haplotype II (LMP2 ‘C’ and LMP7 ‘C’) made individuals carrying it more immune to HBV infection as there was statistically significant high distribution of this haplotype among control than cases. Thus it can be concluded that homozygous SNP {A>C} at codon 145 of LMP7 and Haplotype II (LMP2 ‘C’ and LMP7 ‘C’) has a protective role against HBV infection whereas heterozygous SNP {A>C} at codon 145 of LMP7 and Haplotype I (LMP2 ‘C’ and LMP7 ‘A’) made individuals more susceptible to HBV infection.Keywords: Hepatitis B Virus, single nucleotide polymorphism, low molecular weight proteins, transporters associated with antigen presentation
Procedia PDF Downloads 308373 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application
Authors: Meera A. Albloushi, Adel B. Gougam
Abstract:
The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery
Procedia PDF Downloads 323372 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation
Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um
Abstract:
In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube
Procedia PDF Downloads 201371 Alteration of Placental Development and Vascular Dysfunction in Gestational Diabetes Mellitus Has Impact on Maternal and Infant Health
Authors: Sadia Munir
Abstract:
The aim of this study is to investigate changes in placental development and vascular dysfunction which subsequently affect feto-maternal health in pregnancies complicated by gestational diabetes mellitus (GDM). Fetal and postnatal adverse health outcomes of GDM are shown to be associated with disturbances in placental structure and function. Children of women with GDM are more likely to be obese and diabetic in childhood and adulthood. GDM also increases the risk of adverse pregnancy outcomes, including preeclampsia, birth injuries, macrosomia and neonatal hypoglycemia, respiratory distress syndrome, neonatal cardiac dysfunction and stillbirth. Incidences of type 2 diabetes in the MENA region are growing at an alarming rate which is estimated to become more than double by 2030. Five of the top 10 countries for diabetes prevalence in 2010 were in the Gulf region. GDM also increases the risk of development of type 2 diabetes. Interestingly, more than half of the women with GDM develop diabetes later in their life. The human placenta is a temporary organ located at the interface between mother and fetal blood circulation. Placenta has a central role as both a producer as well as a target of several molecules that are involved in placental development and function. We have investigated performed a Pubmed search with key words placenta, GDM, placental villi, vascularization, cytokines, growth factors, inflammation, hypoxia, oxidative stress and pathophysiology. We have investigated differences in the development and vascularization of placenta, their underlying causes and impact on feto-maternal health through literature review. We have also identified gaps in the literature and research questions that need to be answered to completely understand the central role of placenta in the GDM. This study is important in understanding the pathophysiology of placenta due to changes in the vascularization of villi, surface area and diameter of villous capillaries in pregnancies complicated by GDM. It is necessary to understand these mechanisms in order to develop treatments to reverse their effects on placental malfunctioning, which in turn, will result in improved mother and child health.Keywords: gestational diabetes mellitus, placenta, vasculature, villi
Procedia PDF Downloads 318370 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces
Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi
Abstract:
Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption
Procedia PDF Downloads 345369 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces
Authors: Aditya Kumar
Abstract:
One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning
Procedia PDF Downloads 295368 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications
Authors: Wadha Alqahtani
Abstract:
In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer
Procedia PDF Downloads 117367 The Effect of Two Methods of Upper and Lower Resistance Exercise Training on C-Reactive Protein, Interleukin-6 and Intracellular Adhesion Molecule-1 in Healthy Untrained Women
Authors: Leyla Sattarzadeh, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee
Abstract:
Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6) and adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of resistance exercise training on these inflammatory markers, the present study aimed to examine the effect of eight week different patterns of resistance exercise training on CRP, IL-6 and ICAM-1 levels in healthy untrained women. 40 volunteered and healthy untrained female university students (aged: 21+ 3 yr., Body Mass Index: 21.5+ 3.5 kg/m2) were selected purposefully and divided into three groups. At the end of training protocol and after subjects drop during the protocol in upper body exercise training (n=11), lower body (n=12) completed the eight week of training period although the control group (n=7) did anything. Blood samples gathered pre and post experimental period and CRP, IL-6 and ICAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one way Analysis of Variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP and ICAM-1 showed no significant changes due to the exercise training. But there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper and lower body exercise training by involving the different amount of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP and ICAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.Keywords: C-reactive protein, interleukin-6, intracellular adhesion molecule-1, resistance training
Procedia PDF Downloads 256366 Bioinformatic Design of a Non-toxic Modified Adjuvant from the Native A1 Structure of Cholera Toxin with Membrane Synthetic Peptide of Naegleria fowleri
Authors: Frida Carrillo Morales, Maria Maricela Carrasco Yépez, Saúl Rojas Hernández
Abstract:
Naegleria fowleri is the causative agent of primary amebic meningoencephalitis, this disease is acute and fulminant that affects humans. It has been reported that despite the existence of therapeutic options against this disease, its mortality rate is 97%. Therefore, the need arises to have vaccines that confer protection against this disease and, in addition to developing adjuvants to enhance the immune response. In this regard, in our work group, we obtained a peptide designed from the membrane protein MP2CL5 of Naegleria fowleri called Smp145 that was shown to be immunogenic; however, it would be of great importance to enhance its immunological response, being able to co-administer it with a non-toxic adjuvant. Therefore, the objective of this work was to carry out the bioinformatic design of a peptide of the Naegleria fowleri membrane protein MP2CL5 conjugated with a non-toxic modified adjuvant from the native A1 structure of Cholera Toxin. For which different bioinformatics tools were used to obtain a model with a modification in amino acid 61 of the A1 subunit of the CT (CTA1), to which the Smp145 peptide was added and both molecules were joined with a 13-glycine linker. As for the results obtained, the modification in CTA1 bound to the peptide produces a reduction in the toxicity of the molecule in in silico experiments, likewise, the prediction in the binding of Smp145 to the receptor of B cells suggests that the molecule is directed in specifically to the BCR receptor, decreasing its native enzymatic activity. The stereochemical evaluation showed that the generated model has a high number of adequately predicted residues. In the ERRAT test, the confidence with which it is possible to reject regions that exceed the error values was evaluated, in the generated model, a high score was obtained, which determines that the model has a good structural resolution. Therefore, the design of the conjugated peptide in this work will allow us to proceed with its chemical synthesis and subsequently be able to use it in the mouse meningitis protection model caused by N. fowleri.Keywords: immunology, vaccines, pathogens, infectious disease
Procedia PDF Downloads 92365 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor
Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon
Abstract:
Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles
Procedia PDF Downloads 130364 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics
Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta
Abstract:
Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers
Procedia PDF Downloads 294363 Evaluation of the Inhibitory Activity of Natural Extracts From Spontaneous Plant on the Α-Amylase and Α–Glucosidase and Their Antioxidant Activities
Authors: Ihcen Khacheba, Amar Djeridane, Abdelkarim Kamli, Mohamed Yousfi
Abstract:
Plant materials constitute an important source of natural bioactive molecules. Thus plants have been used from antiquity as sources of medicament against various diseases. These properties are usually attributed to secondary metabolites that are the subject of a lot of research in this field. This is particularly the case of phenolic compounds plants that are widely renowned in therapeutics as anti-inflammatories, enzyme inhibitors, and antioxidants, particularly flavonoïds. With the aim of acquiring a better knowledge of the secondary metabolism of the vegetable kingdom in the region of Laghouat and of the discovering of new natural therapeutics, 10 extracts from 5 Saharan plant species were submitted to chemical screening.The analysis of the preceding biological targets led to the evaluation of the biological activity of the extracts of the species Genista Corsica. The first step, consists in extracting and quantifying phenolic compounds. The second step has been devoted to stugying the effects of phenolic compounds on the kinetics catalyzed by two enzymes belonging to the class of hydrolase (the α-amylase and α-glucosidase) responsible for the digestion of sugars and finally we evaluate the antiantioxidant potential. The analysis results of phenolic extracts show clearly a low content of phenolic compounds in investigated plants. Average total phenolics ranged from 0.0017 to 11.35 mg equivalent gallic acid/g of the crude extract. Whereas the total flavonoids content lie between 0.0015 and 10.,96 mg/g equivalent of rutin. The results of the kinetic study of enzymatic reactions show that the extracts have inhibitory effects on both enzymes, with IC50 values ranging from 95.03 µg/ml to 1033.53 µg/ml for the α-amylase and 279.99 µg/ml to 1215.43 µg/ml for α-glucosidase whose greatest inhibition was found for the acetone extract of June (IC50 = 95.03 µg/ml). The results the antioxidant activity determined by ABTS, DPPH, and phosphomolybdenum tests clearly showed a good antioxidant capacity comparatively to antioxidants taken as reference the biological potential of these plants and could find their use in medicine to replace synthetic products.Keywords: phenolic extracts, inhibition effect, α-amylase, α-glucosidase, antioxidant activity
Procedia PDF Downloads 389362 Nanopriming Potential of Metal Nanoparticles against Internally Seed Borne Pathogen Ustilago triciti
Authors: Anjali Sidhu, Anju Bala, Amit Kumar
Abstract:
Metal nanoparticles have the potential to revolutionize the agriculture owing to sizzling interdisciplinary nano-technological application domain. Numerous patents and products incorporating engineered nanoparticles (NPs) entered into agro-applications with the collective goal to promote proficiency as well as sustainability with lower input and generating meager waste than conventional products and approaches. Loose smut of wheat caused by Ustilago segetum tritici is an internally seed-borne pathogen. It is dormant in the seed unless the seed germinates and its symptoms are expressed at the reproductive stage of the plant only. Various seed treatment agents are recommended for this disease but due to the inappropriate methods of seed treatments used by farmers, each and every seed may not get treated, and the infected seeds escape the fungicidal action. The antimicrobial potential and small size of nanoparticles made them the material of choice as they could enter each seed and restrict the pathogen inside the seed due to the availability of more number of nanoparticles per unit volume of the nanoformulations. Nanoparticles of diverse nature known for their in vitro antimicrobial activity viz. ZnO, MgO, CuS and AgNPs were synthesized, surface modified and characterized by traditional methods. They were applied on infected wheat seeds which were then grown in pot conditions, and their mycelium was tracked in the shoot and leaf region of the seedlings by microscopic staining techniques. Mixed responses of inhibition of this internal mycelium were observed. The time and method of application concluded to be critical for application, which was optimised in the present work. The results implicated that there should be field trails to get final fate of these pot trails up to commercial level. The success of their field trials could be interpreted as a revolution to replace high dose organic fungicides of high residue behaviour.Keywords: metal nanoparticles, nanopriming, seed borne pathogen, Ustilago segetum tritici
Procedia PDF Downloads 145361 Developing a Self-Healing Concrete Filler Using Poly(Methyl Methacrylate) Based Two-Part Adhesive
Authors: Shima Taheri, Simon Clark
Abstract:
Concrete is an essential building material used in the majority of structures. Degradation of concrete over time increases the life-cycle cost of an asset with an estimated annual cost of billions of dollars to national economies. Most of the concrete failure occurs due to cracks, which propagate through a structure and cause weakening leading to failure. Stopping crack propagation is thus the key to protecting concrete structures from failure and is the best way to prevent inconveniences and catastrophes. Furthermore, the majority of cracks occur deep within the concrete in inaccessible areas and are invisible to normal inspection. Few materials intrinsically possess self-healing ability, but one that does is concrete. However, self-healing in concrete is limited to small dormant cracks in a moist environment and is difficult to control. In this project, we developed a method for self-healing of nascent fractures in concrete components through the automatic release of self-curing healing agents encapsulated in breakable nano- and micro-structures. The Poly(methyl methacrylate) (PMMA) based two-part adhesive is encapsulated in core-shell structures with brittle/weak inert shell, synthesized via miniemulsion/solvent evaporation polymerization. Stress fields associated with propagating cracks can break these capsules releasing the healing agents at the point where they are needed. The shell thickness is playing an important role in preserving the content until the final setting of concrete. The capsules can also be surface functionalized with carboxyl groups to overcome the homogenous mixing issues. Currently, this formulated self-healing system can replace up to 1% of cement in a concrete formulation. Increasing this amount to 5-7% in the concrete formulation without compromising compression strength and shrinkage properties, is still under investigation. This self-healing system will not only increase the durability of structures by stopping crack propagation but also allow the use of less cement in concrete construction, thereby adding to the global effort for CO2 emission reduction.Keywords: self-healing concrete, concrete crack, concrete deterioration, durability
Procedia PDF Downloads 119360 Effect of Lactone Glycoside on Feeding Deterrence and Nutritive Physiology of Tobacco Caterpillar Spodoptera litura Fabricius (Noctuidae: Lepidoptera)
Authors: Selvamuthukumaran Thirunavukkarasu, Arivudainambi Sundararajan
Abstract:
The plant active molecules with their known mode of action are important leads to the development of newer insecticides. Lactone glycoside was identified earlier as the active principle in Cleistanthus collinus (Roxb.) Benth. (Fam: Euphorbiaceae). It possessed feeding deterrent, insecticidal and insect growth regulatory actions at varying concentrations. Deducing its mode of action opens a possibility of its further development. A no-choice leaf disc bioassay was carried out with lactone glycoside at different doses for different instars and Deterrence Indices were worked out. Using regression analysis concentrations imparting 10, 30 and 50 per cent deterrence (DI10, DI30 & DI50) were worked out. At these doses, effect on nutritional indices like Relative Consumption and Growth Rates (RCR & RGR), Efficiencies of Conversion of Ingested and Digested food (ECI & ECD) and Approximate Digestibility (AD) were worked out. The Relative Consumption and Growth Rate of control and lactone glycoside larva were compared by regression analysis. Regression analysis of deterrence indices revealed that the concentrations needed for imparting 50 per cent deterrence was 60.66, 68.47 and 71.10 ppm for third, fourth and fifth instars respectively. Relative consumption rate (RCR) and relative growth rate (RGR) were reduced. This confirmed the antifeedant action of the fraction. Approximate digestibility (AD) was found greater in treatments indicating reduced faeces because of poor digestibility and retention of food in the gut. Efficiency of conversion of both ingested and digested (ECI and ECD) food was also found to be greatly reduced. This indicated presence of toxic action. This was proved by comparing growth efficiencies of control and lactone glycoside treated larvae. Lactone glycoside was found to possess both feeding deterrent and toxic modes of action. Studies on molecular targets based on this preliminary site of action lead to new insecticide development.Keywords: Spodoptera litura Fabricius, Cleistanthus collinus (Roxb.) Benth, feeding deterrence, mode of action
Procedia PDF Downloads 156359 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application
Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander
Abstract:
The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.Keywords: dopolymer, ε-decalactone, indomethacin, micelles
Procedia PDF Downloads 296358 Proprotein Convertase Subtilisin/Kexin Type 9 Enhances Arterial Medial Calcification in a Uremic Rat Model of Chronic Kidney Disease
Authors: Maria Giovanna Lupo, Marina Camera, Marcello Rattazzi, Nicola Ferri
Abstract:
A complex interplay among chronic kidney disease, lipid metabolism and aortic calcification has been recognized starting from results of many clinical and experimental studies. Here we investigated the influence of kidney function on PCSK9 levels, both in uremic rats and in clinical observation study, and its potential direct action on cultured smooth muscle cells (SMCs) calcification. In a cohort of 594 subjects enrolled in a single centre, observational, cross-sectional and longitudinal study, a negative association between GFR and plasma PCSK9 was found. Atherosclerotic cardiovascular disease (ASCVD), as co-morbidity, further increased PCSK9 plasma levels. Diet-induced uremic condition in rats, induced aortic calcification and increased total cholesterol and PCSK9 levels in plasma, livers and kidneys. Immunohistochemical analysis confirmed PCSK9 expression in aortic SMCs. SMCs overexpressing PCSK9 (SMCsPCSK9), cultured for 7-days in a pro-calcification environment (2.0mM or 2.4mM inorganic phosphate, Pi) showed a significantly higher extracellular calcium (Ca2+) deposition compared to mocked SMCs. Under the same experimental conditions, the addition of exogenous recombinant PCSK9 did not increase the extracellular calcification of SMCs. By flow cytometry analysis we showed that SMCsPCSK9, in response to 2.4mM Pi, released higher number of extracellular vesicles (EVs) positive for three tetraspanin molecules, such as CD63, CD9, and CD81. EVs derived from SMCsPCSK9 tended to be more enriched in calcium and alkaline phosphatase (ALPL), compared to EVs from mocks SMCs. In conclusion, our study reveals a direct role of PCSK9 on vascular calcification induced by higher inorganic phosphate levels associated to CKD condition. This effect appears to be mediated by a positive effect of endogenous PCSK9 on the release of EVs containing Ca2+ and ALP, which facilitate the deposition inorganic calcium phosphate crystals.Keywords: PCSK9, calcification, extracellular vesicles, chronic kidney disease
Procedia PDF Downloads 114357 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 18356 Quantum Chemical Calculations on Molecular Structure, Spectroscopy and Non-Linear Optical Properties of Some Chalcone Derivatives
Authors: Archana Gupta, Rajesh Kumar
Abstract:
The chemistry of chalcones has generated intensive scientific studies throughout the world. Especially, interest has been focused on the synthesis and biodynamic activities of chalcones. The blue light transmittance, excellent crystallizability and the two planar rings connected through a conjugated double bond show that chalcone derivatives are superior nonlinear organic compounds. 3-(2-Chloro-6-fluoro¬phen¬yl)-1-(2-thien¬yl) prop-2-en-1-one, 3-(2, 4- Dichlorophenyl) – 1 - (4-methylphenyl) – prop -2-en-1-one, (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one are some chalcone derivatives exhibiting non linear optical (NLO) properties. NLO materials have been extensively investigated in recent years as they are the key elements for photonic technologies of optical communication, optical interconnect oscillator, amplifier, frequency converter etc. Due to their high molecular hyperpolarizabilities, organic materials display a number of significant NLO properties. Experimental measurements and theoretical calculations on molecular hyperpolarizability β have become one of the key factors in the design of second order NLO materials. Theoretical determination of hyperpolarizability is quite useful both in understanding the relationship between the molecular structure and NLO properties. It also provides a guideline to experimentalists for the design and synthesis of organic NLO materials. Quantum-chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular NLO processes and the establishment of structure–property relationships. In the present investigation, the detailed vibrational analysis of some chalcone derivatives is taken up to understand the correlation of the charge transfer interaction and the NLO activity of the molecules based on density functional theory calculations. The vibrational modes contributing toward the NLO activity have been identified and analyzed. Rather large hyperpolarizability derived by theoretical calculations suggests the possible future use of these compounds for non-linear optical applications. The study suggests the importance of π - conjugated systems for non-linear optical properties and the possibility of charge transfer interactions. We hope that the results of the present study of chalcone derivatives are of assistance in development of new efficient materials for technological applications.Keywords: hyperpolarizability, molecular structure, NLO material, quantum chemical calculations
Procedia PDF Downloads 235355 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method
Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike
Abstract:
Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction
Procedia PDF Downloads 161