Search results for: local machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13528

Search results for: local machine learning

11698 Using Deep Learning in Lyme Disease Diagnosis

Authors: Teja Koduru

Abstract:

Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.

Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash

Procedia PDF Downloads 241
11697 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 143
11696 Teaching Practitioners to Use Technology to Support and Instruct Students with Autism Spectrum Disorders

Authors: Nicole Nicholson, Anne Spillane

Abstract:

The purpose of this quantitative, descriptive analysis was to determine the success of a post-graduate new teacher education program, designed to teach educators the knowledge and skills necessary to use technology in the classroom, improve the ability to communicate with stakeholders, and implement EBPs and UDL principles into instruction for students with ASD (Autism Spectrum Disorders ). The success of candidates (n=20) in the program provided evidence as to how candidates were effectively able to use technology to create meaningful learning opportunities and implement EBPs for individuals with ASD. ≥90% of participants achieved the following competencies: podcast creation; technology used to share information about assistive technology; and created a resource website on ASD (including information on EBPs, local and national support groups, ASD characteristics, and the latest research on ASD). 59% of students successfully created animation. Results of the analysis indicated that the teacher education program was successful in teaching candidates desired competencies during its first year of implementation.

Keywords: autism spectrum disorders, ASD, evidence based practices, EBP, universal design for learning, UDL

Procedia PDF Downloads 163
11695 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.

Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o

Procedia PDF Downloads 286
11694 The Intricacies of Local Governance in Local Economic Development: A Case Study of uThukela's Traditional Authority

Authors: Methembe Mdlalose

Abstract:

This paper synthesizes the findings of a study that utilized a purposive sampling methodology laced within a grounded theory analytical framework with LED managers, mayors, and traditional leaders representing six municipalities of uThukela District of KwaZulu-Natal, South Africa. The paper critiques the two institution’s micro-relations within local governance and their overall impact on the general development discourse of rural areas. The study is located in the province of KwaZulu-Natal, a part of South Africa that experiences extremely low levels of development in rural areas and suffers from high rates of inequality, poverty, and unemployment. The paper unpacks the role of two significant stakeholders in the local sphere. Considered as the two dominant stakeholders at the local level, questions of compatibility between traditional leaders and municipal councillors often surge, as the two institutions (who represent two autonomous entities) that operate within the same operational boarders. The discussion around community development lies very deeply on accountability, which assures citizens that fruitless spending is curbed and good governance is maintained. If development is to be assured, it is vital to monitor accountability within government spheres and its departments. It is further essential to monitor the relations within local government. The findings of this research confirmed how relationships between traditional leaders and councillors can and have contributed to economic development or its stagnation thereof in rural areas. In addition, the findings revealed that there is an extensive need for the two stakeholders to work collectively, as this is a vital move in planning for development. Furthermore, the better accountability of local government and a better understanding of how clear policy and its implementation is may be a valuable asset in the discourse of community economic development in rural areas.

Keywords: economic development, traditional leadership, democratically elected councillors, local governance

Procedia PDF Downloads 209
11693 New Knowledge Co-Creation in Mobile Learning: A Classroom Action Research with Multiple Case Studies Using Mobile Instant Messaging

Authors: Genevieve Lim, Arthur Shelley, Dongcheol Heo

Abstract:

Abstract—Mobile technologies can enhance the learning process as it enables social engagement around concepts beyond the classroom and the curriculum. Early results in this ongoing research is showing that when learning interventions are designed specifically to generate new insights, mobile devices support regulated learning and encourage learners to collaborate, socialize and co-create new knowledge. As students navigate across the space and time boundaries, the fundamental social nature of learning transforms into mobile computer supported collaborative learning (mCSCL). The metacognitive interaction in mCSCL via mobile applications reflects the regulation of learning among the students. These metacognitive experiences whether self-, co- or shared-regulated are significant to the learning outcomes. Despite some insightful empirical studies, there has not yet been significant research that investigates the actual practice and processes of the new knowledge co-creation. This leads to question as to whether mobile learning provides a new channel to leverage learning? Alternatively, does mobile interaction create new types of learning experiences and how do these experiences co-create new knowledge. The purpose of this research is to explore these questions and seek evidence to support one or the other. This paper addresses these questions from the students’ perspective to understand how students interact when constructing knowledge in mCSCL and how students’ self-regulated learning (SRL) strategies support the co-creation of new knowledge in mCSCL. A pilot study has been conducted among international undergraduates to understand students’ perspective of mobile learning and concurrently develops a definition in an appropriate context. Using classroom action research (CAR) with multiple case studies, this study is being carried out in a private university in Thailand to narrow the research gaps in mCSCL and SRL. The findings will allow teachers to see the importance of social interaction for meaningful student engagement and envisage learning outcomes from a knowledge management perspective and what role mobile devices can play in these. The findings will signify important indicators for academics to rethink what is to be learned and how it should be learned. Ultimately, the study will bring new light into the co-creation of new knowledge in a social interactive learning environment and challenges teachers to embrace the 21st century of learning with mobile technologies to deepen and extend learning opportunities.

Keywords: mobile computer supported collaborative learning, mobile instant messaging, mobile learning, new knowledge co-creation, self-regulated learning

Procedia PDF Downloads 232
11692 Innovative Approaches to Formal Education: Effect of Online Cooperative Learning Embedded Blended Learning on Student's Academic Achievement and Attitude

Authors: Mohsin Javed

Abstract:

School Education department is usually criticized for utilizing quite low or fewer academic days due to many reasons like extreme weather conditions, sudden holidays, summer vocations, pandemics and, terrorism etc. The purpose of the experimental study was to determine the efficacy of online cooperative learning (OCL) integrated in the rotation model of blended learning. The effects on academic achievement of students and students' attitude about OCL embedded learning were assessed. By using a posttest only control group design, sixty-two first-year students were randomly allocated to either the experimental (30) or control (32) group. The control group received face to face classes for six sessions per week, while the experimental group had three OCL and three formal sessions per week under rotation model. Students' perceptions of OCL were evaluated using a survey questionnaire. Data was analyzed by independent sample t test and one sample t test. According to findings, the intervention greatly improved the state of the dependent variables. The results demonstrate that OCL can be successfully implemented in formal education using a blended learning rotation approach. Higher secondary institutions are advised to use this model in situations like Covid 19, smog, unexpected holidays, instructor absence from class due to increased responsibilities, and summer vacations.

Keywords: blended learning, online cooperative learning, rotation model of blended learning, supplementing

Procedia PDF Downloads 59
11691 Simulation Model for Evaluating the Impact of Adaptive E-Learning in the Agricultural Sector

Authors: Maria Nabakooza

Abstract:

Efficient agricultural production is very significant in attaining food sufficiency and security in the world. Many methods are employed by the farmers while attending to their gardens, from manual to mechanized, with Farmers range from subsistence to commercial depending on the motive. This creates a lacuna in the modes of operation in this field as different farmers will take different approaches. This has led to many e-Learning courses being introduced to address this gap. Many e-learning systems use advanced network technologies like Web services, grid computing to promote learning at any time and any place. Many of the existing systems have not inculcated the applicability of the modules in them, the tools to be used and further access whether they are the right tools for the right job. A thorough investigation into the applicability of adaptive eLearning in the agricultural sector has not been taken into account; enabling the assumption that eLearning is the right tool for boosting productivity in this sector. This study comes in to provide an insight and thorough analysis as to whether adaptive eLearning is the right tool for boosting agricultural productivity. The Simulation will adopt a system dynamics modeling approach as a way of examining causality and effect relationship. This study will provide teachers with an insight into which tools they should adopt in designing, and provide students the opportunities to achieve an orderly learning experience through adaptive navigating e-learning services.

Keywords: agriculture, adaptive, e-learning, technology

Procedia PDF Downloads 251
11690 Understanding Innovation, Mentorship, and Motivation in Teams, a Design-Centric Approach for Undergraduates

Authors: K. Z. Tang, K. Ameek, K. Kuang

Abstract:

Rapid product development cycles and changing economic conditions compel businesses to find new ways to stay relevant and effective. One of the ways which many companies have adopted is to spur innovations within the various team-based units in the organization. It would be relevant and important to ensure our graduates are ready to excel in such evolving conditions within their professional eco-systems. However, it is not easy to understand the interplays of nurturing team innovation and improving students’ learning, in the context of engineering education. In this study, we seek to understand team innovation and explore ways to improve students’ performance and learning, via motivation and mentorship. Learning goals from a group of students are collected during a carefully designed two-week long summer programme to provide insights on the main themes, within the context of learning and working in a team.

Keywords: team innovation, mentorship, motivation, learning

Procedia PDF Downloads 282
11689 Local Gambling Attitudes, Corporate R&D Investment and Long-Term Financial Performance

Authors: Hong Fan, Lifang Gao, Feng Zhan

Abstract:

This paper examines the influence of local gambling attitudes on a firm's long-term financial performance. Firms located in gambling-prone regions may be more willing to take risks, thus spending more on innovative projects. However, firms in such regions may also be likely to choose projects impulsively and allocate resources inefficiently. By studying Chinese publicly listed firms from 2010 to 2017, we find that firms in more gambling-prone regions invest more in R&D. Both local gambling attitudes and firms’ R&D spending are positively associated with firms’ long-term financial performance. More importantly, our study reveals that the positive impact of R&D spending on firms’ long-term financial performance is weakened by gambling-friendly attitudes, probably because firms in gambling-prone regions are more likely to overinvest in risky projects. This effect is stronger for larger firms, state-owned enterprises (SOEs), firms with more government subsidies, and firms with weaker internal control.

Keywords: regional gambling attitudes, long-term financial performance, R&D, risk, local bias

Procedia PDF Downloads 115
11688 Personality Based Adaptive E-Learning 3D Game

Authors: Yasith Nayana, Janani Manamperuma, Lalindi Amarasinghe, Sasanka Kodithuwakku

Abstract:

Educational games are popular among current e-learning systems. The approach to education through interactive media is expected to motivate students and encourage participation and engagement. ‘Kalayathra’ is an adaptive, player centered e-learning 3D game. The game identifies the player’s personality and adapt the gaming environment according to the player’s preference. Our platform measures the student’s performance and support learning through player assessment. Player experience is a good measure of the level of fun and education presented to players. To assess the level of playability we introduce an educational playability model. ‘Kalayathra’ is developed according to the GCE O/L syllabus and teaching guide in Sri Lankan education system. The game is capable of guiding players into the environment and aid them in tasks and activities depending on how much the player requires help.

Keywords: e-learning, games, adaptive, personality, gamification, player experience

Procedia PDF Downloads 434
11687 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques

Authors: Bhrugesh Radadiya, Jaydeep Shah

Abstract:

In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.

Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm

Procedia PDF Downloads 728
11686 Gardening as a Contextual Scaffold for Learning: Connecting Community Wisdom for Science and Health Learning through Participatory Action Research

Authors: Kamal Prasad Acharya

Abstract:

The related literature suggests that teaching and learning science at the basic level community schools in Nepal is based on book recitation. Consequently, the achievement levels and the understanding of basic science concepts is much below the policy expectations. In this context, this study intended to gain perception in the implementation practices of school gardens ‘One Garden One School’ for science learning and to meet the target of sustainable development goals that connects community wisdom regarding school gardening activities (SGAs) for science learning. This Participatory Action Research (PAR) study was done at the action school located in Province 3, Chitwan of Federal Nepal, supported under the NORHED/Rupantaran project. The purpose of the study was to connect the community wisdom related to gardening activities as contextual scaffolds for science learning. For this, in-depth interviews and focus group discussions were applied to collect data which were analyzed using a thematic analysis. Basic level students, science teachers, and parents reported having wonderful experiences such as active and meaningful engagement in school gardening activities for science learning as well as science teachers’ motivation in activity-based science learning. Overall, teachers, students, and parents reported that the school gardening activities have been found to have had positive effects on students’ science learning as they develop basic scientific concepts by connecting community wisdom as a contextual scaffold. It is recommended that the establishment of a school garden is important for science learning in community schools throughout Nepal.

Keywords: contextual scaffold, community wisdom, science and health learning, school garden

Procedia PDF Downloads 178
11685 The Impact of Using Microlearning to Enhance Students' Programming Skills and Learning Motivation

Authors: Ali Alqarni

Abstract:

This study aims to explore the impact of microlearning on the development of the programming skills as well as on the motivation for learning of first-year high schoolers in Jeddah. The sample consists of 78 students, distributed as 40 students in the control group, and 38 students in the treatment group. The quasi-experimental method, which is a type of quantitative method, was used in this study. In addition to the technological tools used to create and deliver the digital content, the study utilized two tools to collect the data: first, an observation card containing a list of programming skills, and second, a tool to measure the student's motivation for learning. The findings indicate that microlearning positively impacts programming skills and learning motivation for students. The study, then, recommends implementing and expanding the use of microlearning in educational contexts both in the general education level and the higher education level.

Keywords: educational technology, teaching strategies, online learning, microlearning

Procedia PDF Downloads 128
11684 Police and Community Crime Prevention in Sweden

Authors: Peter Lindstrom, Caroline Gyberg, Scott Goodwin

Abstract:

The Swedish police organisation was fundamentally reorganized in 2015 when 21 regional police forces were combined into one national police authority divided in 7 larger police regions, 35 police areas, and some 100 local police districts. A central theme for the reform was that local crime prevention policing should be more unified in the country. In this paper, we review crime prevention strategies in Sweden from a criminological and policing perspective focusing, among other things, on differences between urban and rural areas. In the crime prevention field, words such as 'knowledge- and evidence-based', 'collaboration', and 'strategies' are common. Our objective is to investigate the relationship between theoretical and practical knowledge in local crime prevention work. Our research indicate that an elaborated and strategic connection between theoretical and practical perspectives is important for successful local crime prevention work. Universities may provide a platform such knowledge exchange.

Keywords: crime prevention, police reform, urban and rural areas, criminological and policing perspectives

Procedia PDF Downloads 181
11683 Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future.

Keywords: local acceptance, renewable energy facility, spent nuclear fuel repository, interview

Procedia PDF Downloads 301
11682 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning

Authors: Dina Tareq Ismail, Alexandria A. Proff

Abstract:

The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.

Keywords: ICT skills, m-learning, self-efficacy, teacher-motivation

Procedia PDF Downloads 106
11681 Enhancing Critical Thinking through a Virtual Learning Environment

Authors: Diana Meeks

Abstract:

The use of a virtual learning environment (VLE), via the Second Life Platform has been a positive experience to enhance critical thinking, for executive graduate nursing practicum students. Due to the interest of faculty and students, the opportunity to immerse students via a virtual learning environment to enhance critical thinking related to the nurse executive role was explored. The College of Nursing realized the potential to enhance critical thinking and incorporated the Second Life, virtual learning environment platform into their graduate nursing program within their executive practicum course. The results from students and faculty regarding this experience have been positive. Students state the VLE platform has enhanced their critical thinking and interaction with peers. To date, course refinement incorporating a Second Life, virtual learning environment for the nurse executive practicum students continues. As a result, a designated subject matter expert has been designated for this course. The development and incorporation of the VLE approach will be presented.

Keywords: nursing, virtual learning environment, critical thinking, VLE

Procedia PDF Downloads 468
11680 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 366
11679 FLIME - Fast Low Light Image Enhancement for Real-Time Video

Authors: Vinay P., Srinivas K. S.

Abstract:

Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.

Keywords: low light image enhancement, real-time video, computer vision, machine learning

Procedia PDF Downloads 206
11678 Short-Term Operation Planning for Energy Management of Exhibition Hall

Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.

Keywords: exhibition hall, energy management, predictive model, simulation-based optimization

Procedia PDF Downloads 339
11677 A Framework for Rating Synchronous Video E-Learning Applications

Authors: Alex Vakaloudis, Juan Manuel Escano-Gonzalez

Abstract:

Setting up a system to broadcast live lectures on the web is a procedure which on the surface does not require any serious technical skills mainly due to the facilities provided by popular learning management systems and their plugins. Nevertheless, producing a system of outstanding quality is a multidisciplinary and by no means a straightforward task. This complicatedness may be responsible for the delivery of an overall poor experience to the learners, and it calls for a formal rating framework that takes into account the diverse aspects of an architecture for synchronous video e-learning systems. We discuss the specifications of such a framework which at its final stage employs fuzzy logic technique to transform from qualitative to quantitative results.

Keywords: synchronous video, fuzzy logic, rating framework, e-learning

Procedia PDF Downloads 560
11676 Students' Perception of Using Dental E-Models in an Inquiry-Based Curriculum

Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges

Abstract:

Aim: To investigate student’s perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding student’s perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most of the students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, student's preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.

Keywords: e-models, inquiry-based curriculum, education, questionnaire

Procedia PDF Downloads 431
11675 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93
11674 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines

Authors: P. Byrnes, F. A. DiazDelaO

Abstract:

The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.

Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines

Procedia PDF Downloads 221
11673 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes

Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari

Abstract:

Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.

Keywords: emotion, learning process, multi-agent simulation, serious games

Procedia PDF Downloads 398
11672 Extent of I.C.T Application in Record Management and Factors Hindering the Utilization of E-Learning in the Government Owned Universities in Enugu State, Nigeria

Authors: Roseline Unoma Chidobi

Abstract:

The purpose of this study is to identify the extent of Information Communication Technology (ICT) application in record management and some factors militating against the utilization of e-learning in the universities in Enugu state. The study was a survey research the quantitative data were collected through a 30 – item questionnaire title extent of ICT Application in Record management and militating Factors in the utilization of e-learning (EIARMMFUE). This was administered on a population of 603 respondents made up of university academic staff and senior administrative staff. The data were analyzed using mean, standard deviation and t-test statistics on a modified 4 point rating scale. Findings of the study revealed among others that ICT are not adequately applied in the management of records in the Universities in Nigeria. Factors like wrong notion or superstitious believe hinder the effective utilization of e – learning approach. The study recommended that the use of ICT in record management should be enhanced in order to achieve effective school management. All the factors militating against the effective utilization of e-learning approach should be addressed for the maximum realization of teaching and learning.

Keywords: e-learning, information communication, teaching, technology, tertiary institution

Procedia PDF Downloads 525
11671 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 94
11670 Integrating Sustainable Development Goals in Teaching Mathematics Using Project Based Learning

Authors: S. Goel

Abstract:

In the current scenario, education should be realistic and nature-friendly. The earlier definition of education was restricted to the holistic development of the child which help them to increase their capacity and helps in social upliftment. But such definition gives a more individualistic aim of education. Due to that individualistic aim, we have become disconnected from nature. So, a school should be a place which provides students with an area to explore. They should get practical learning or learning from nature which is also propounded by Rousseau in the mid-eighteenth century. Integrating Sustainable development goals in the school curriculum will make it possible to connect the nature with the lives of the children in the classroom. Then, students will be more aware and sensitive towards their social and natural surroundings. The research attempts to examine the efficiency of project-based learning in mathematics to create awareness around sustainable development goals. The major finding of the research was that students are less aware of sustainable development goals, but when given time and an appropriate learning environment, students can be made aware of these goals. In this research, project-based learning was used to make students aware of sustainable development goals. Students were given pre test and post test which helped in analyzing their performance. After the intervention, post test result showed that mathematics projects can create an awareness of sustainable development goals.

Keywords: holistic development, natural learning, project based learning, sustainable development goals

Procedia PDF Downloads 180
11669 The Interactions among Motivation, Persistence, and Learning Abilities as They Relate to Academic Outcomes in Children

Authors: Rachelle M. Johnson, Jenna E. Finch

Abstract:

Motivation, persistence, and learning disability status are all associated with academic performance, but to the author's knowledge, little research has been done on how these variables interact with one another and how that interaction looks different within children with and without learning disabilities. The present study's goal was to examine the role motivation and persistence play in the academic success of children with learning disabilities and how these variables interact. Measurements were made using surveys and direct cognitive assessments on each child. Analyses were run on student's scores in motivation, persistence, and ability to learn compared to other fifth grade students. In this study, learning ability was intended as a proxy for learning disabilities (LDs). This study included a nationally representative sample of over 8,000 fifth-grade children from across the United States. Multiple interactions were found among these variables of motivation, persistence, and motivation as they relate to academic achievement. The major finding of the study was the significant role motivation played in academic achievement. This study shows the importance of measuring the within-group. One key finding was that motivation was associated with academic success and was moderated by the other variables. The interaction results were different for math and reading outcomes, suggesting that reading and math success are different and should be addressed differently. This study shows the importance of measuring the within-group differences in levels of motivation to better understand the academic success of children with and without learning disabilities. This study's findings call for further investigation into motivation and the possible need for motivational intervention for students, especially those with learning disabilities

Keywords: academic achievement, learning disabilities, motivation, persistence

Procedia PDF Downloads 121