Search results for: modeling subsample
2183 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic
Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović
Abstract:
This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.Keywords: fuzzy logic, metal machining, process modeling, surface roughness
Procedia PDF Downloads 1592182 Chip Less Microfluidic Device for High Throughput Liver Spheroid Generation
Authors: Sourita Ghosh, Falguni Pati, Suhanya Duraiswamy
Abstract:
Spheroid, a simple three-dimensional cellular aggregate, allows us to simulate the in-vivo complexity of cellular signaling and interactions in greater detail than traditional 2D cell culture. It can be used as an in-vitro model for drug toxicity testing, tumor modeling and many other such applications specifically for cancer. Our work is focused on the development of an affordable, user-friendly, robust, reproducible, high throughput microfluidic device for water in oil droplet production, which can, in turn, be used for spheroids manufacturing. Here, we have investigated the droplet breakup between two non-Newtonian fluids, viz. silicone oil and decellularized liver matrix, which acts as our extra cellular matrix (ECM) for spheroids formation. We performed some biochemical assays to characterize the liver ECM, as well as rheological studies on our two fluids and observed a critical dependence of capillary number (Ca) on droplet breakup and homogeneous drop formationKeywords: chip less, droplets, extracellular matrix, liver spheroid
Procedia PDF Downloads 892181 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools
Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez
Abstract:
The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.Keywords: flow-shop scheduling problem, makespan, Petri nets, state equation
Procedia PDF Downloads 2982180 Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions
Authors: H. Golchoobian, S. Saedodin, M. H. Taheri, A. Sarafraz
Abstract:
In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.Keywords: enclosure, natural convection, numerical solution, Nusselt number, triangular
Procedia PDF Downloads 1972179 Stock Price Prediction with 'Earnings' Conference Call Sentiment
Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu
Abstract:
Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.Keywords: earnings call script, random forest, sentiment analysis, stock price prediction
Procedia PDF Downloads 2922178 Ecological Networks: From Structural Analysis to Synchronization
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.Keywords: ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks
Procedia PDF Downloads 2992177 Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures
Authors: Naoyuki Sugihashi, Toshiharu Kishi
Abstract:
The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated.Keywords: thermal crack control, mass concrete, thermal cracking probability, durability of concrete, calculating method of cracking probability
Procedia PDF Downloads 3472176 Topic Sentiments toward the COVID-19 Vaccine on Twitter
Authors: Melissa Vang, Raheyma Khan, Haihua Chen
Abstract:
The coronavirus disease 2019 (COVID‐19) pandemic has changed people's lives from all over the world. More people have turned to Twitter to engage online and discuss the COVID-19 vaccine. This study aims to present a text mining approach to identify people's attitudes towards the COVID-19 vaccine on Twitter. To achieve this purpose, we collected 54,268 COVID-19 vaccine tweets from September 01, 2020, to November 01, 2020, then the BERT model is used for the sentiment and topic analysis. The results show that people had more negative than positive attitudes about the vaccine, and countries with an increasing number of confirmed cases had a higher percentage of negative attitudes. Additionally, the topics discussed in positive and negative tweets are different. The tweet datasets can be helpful to information professionals to inform the public about vaccine-related informational resources. Our findings may have implications for understanding people's cognitions and feelings about the vaccine.Keywords: BERT, COVID-19 vaccine, sentiment analysis, topic modeling
Procedia PDF Downloads 1502175 Assessing Social Vulnerability and Policy Adaption Application Responses Based on Landslide Risk Map
Authors: Z. A. Ahmad, R. C. Omar, I. Z. Baharuddin, R. Roslan
Abstract:
Assessments of social vulnerability, carried out holistically, can provide an important guide to the planning process and to decisions on resource allocation at various levels, and can help to raise public awareness of geo-hazard risks. The assessments can help to provide answers for basic questions such as the human vulnerability at the geo-hazard prone or disaster areas causing health damage, economic loss, loss of natural heritage and vulnerability impact of extreme natural hazard event. To overcome these issues, integrated framework for assessing the increasing human vulnerability to environmental changes caused by geo-hazards will be introduced using an indicator from landslide risk map that is related to agent based modeling platform. The indicators represent the underlying factors, which influence a community’s ability to deal with and recover from the damage associated with geo-hazards. Scope of this paper is particularly limited to landslides.Keywords: social, vulnerability, geo-hazard, methodology, indicators
Procedia PDF Downloads 2852174 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq
Procedia PDF Downloads 1762173 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT
Authors: Imane Khalil, Quinn Pratt
Abstract:
In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification
Procedia PDF Downloads 2202172 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material
Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel
Abstract:
In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient
Procedia PDF Downloads 4322171 Measuring Banking Risk
Authors: Mike Tsionas
Abstract:
The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS
Procedia PDF Downloads 3492170 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields
Authors: John Knight, Fuchun Li, Yan Xu
Abstract:
Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function
Procedia PDF Downloads 3682169 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 1752168 Risk Management of Water Derivatives: A New Commodity in The Market
Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg
Abstract:
This paper is a concise introduction of the risk management on the water derivatives market. Water, a new commodity in the market, is one of the most important commodity on earth. As important to life and planet as crops, metals, and energy, none of them matters without water. This paper presents a brief overview of water as a tradable commodity via a new first of its kind futures contract on the Nasdaq Veles California Water Index (NQH2O) derivative instrument, TheGeneralised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be the used to measure the water price volatility of the instrument and its performance since it’s been traded. describe the main products and illustrate their usage in risk management and also discuss key challenges with modeling and valuation of water as a traded commodity and finally discuss how water derivatives may be taken as an alternative asset investment class.Keywords: water derivatives, commodity market, nasdaq veles california water Index (NQH2O, water price, risk management
Procedia PDF Downloads 1362167 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis
Authors: Jamal Takhchi
Abstract:
The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.Keywords: structural intensity, NVH, body in white, irrotatational intensity
Procedia PDF Downloads 1552166 Modeling and Control Design of a Centralized Adaptive Cruise Control System
Authors: Markus Mazzola, Gunther Schaaf
Abstract:
A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability
Procedia PDF Downloads 5152165 An Analysis of the Influence of Employee Readiness for Change on TQM Implementation
Authors: Mohamed Haffar, Khalil Al-Hyari, Mohammed Khair Abu Zaid, Ramadane Djbarni, Mohammed Hamdan
Abstract:
While employee readiness for change (ERFC) is recognised as critical for total quality management (TQM) implementation, there is a lack of systematic and empirical studies regarding the relationship between ERFC dimensions and TQM. Therefore, this study proposes to fill this gap by providing empirical evidence leading to advancement in the understanding of the influences of ERFC components on TQM implementation. The empirical data for this study was drawn from a survey of 400 middle and senior managers of Jordanian firms. The analysis of the collected data, which was conducted using Structural Equation Modeling technique, revealed that three of the ERFC components, namely personally beneficial, change self-efficacy and management support are the most supportive ERFC dimensions for TQM implementation. Therefore, this paper makes a novel contribution by providing a refined and deeper comprehension of the relationships between ERFCs and TQM implementation.Keywords: total quality management, employee readiness for change, manufacturing organisations, Jordan
Procedia PDF Downloads 5592164 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments
Authors: G. Carrero, C. Contreras, M. J. Hendzel
Abstract:
Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation
Procedia PDF Downloads 4412163 Modeling and Tracking of Deformable Structures in Medical Images
Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan
Abstract:
This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images
Procedia PDF Downloads 3422162 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India
Authors: Sachin Kamble, Shradha Gawankar
Abstract:
This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management
Procedia PDF Downloads 3002161 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model
Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus
Abstract:
This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method
Procedia PDF Downloads 4832160 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm
Procedia PDF Downloads 4702159 Impact Assessment of Lean Practices on Social Sustainability Indicators: An Approach Using ISM Method
Authors: Aline F. Marcon, Eduardo F. da Silva, Marina Bouzon
Abstract:
The impact of lean management on environmental sustainability is the research line that receives the most attention from academicians. Therefore, the social dimension of sustainable development has so far received less attention. This paper aims to evaluate the impact of intra-plant lean manufacturing practices on social sustainability indicators extracted from the Global Reporting Initiative (GRI) parameters. The method is two-phased, including MCDM approach to uncover the most relevant practices regarding social performance and Interpretive Structural Modeling (ISM) method to reveal the structural relationship among lean practices. Professionals from the academic and industrial fields answered the questionnaires. From the results of this paper, it is possible to verify that practices such as “Safety Improvement Programs”, “Total Quality Management” and “Cross-functional Workforce” are the ones which have the most positive influence on the set of GRI social indicators.Keywords: indicators, ISM, lean, social, sustainability
Procedia PDF Downloads 1482158 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions
Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz
Abstract:
This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle
Procedia PDF Downloads 2352157 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 3112156 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4992155 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance
Authors: Liyew Yizengaw Yitayih
Abstract:
This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity
Procedia PDF Downloads 652154 Modeling of Compaction Curves for CCA-Cement Stabilized Lateritic Soils
Authors: O. Ahmed Apampa, Yinusa, A. Jimoh
Abstract:
The aim of this study was to develop an appropriate model for predicting the compaction behavior of lateritic soils and corn cob ash (CCA) stabilized lateritic soils. This was done by first adopting an equation earlier developed for fine-grained soils and subsequent adaptation by others and extending it to modified lateritic soil through the introduction of alpha and beta parameters which are polynomial functions of the CCA binder input. The polynomial equations were determined with MATLAB R2011 curve fitting tool, while the alpha and beta parameters were determined by standard linear programming techniques using the Solver function of Microsoft Excel 2010. The model so developed was a good fit with a correlation coefficient R2 value of 0.86. The paper concludes that it is possible to determine the optimum moisture content and the maximum dry density of CCA stabilized soils from the compaction test of the unmodified soil, and recommends that this procedure is extended to other binder stabilized lateritic soils to facilitate quick decision making in roadworks.Keywords: compaction, corn cob ash, lateritic soil, stabilization
Procedia PDF Downloads 533