Search results for: temporal modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4825

Search results for: temporal modeling

4675 Geodynamics Behaviour of Greater Cairo as Deduced from 4D Gravity and Seismic Activities

Authors: Elsayed A. Issawy, Anwar H. Radwan

Abstract:

Recent crustal deformations studies in Egypt are applied on the most active areas with relation to seismic activity. Temporal gravity variations in parallel with the geodetic technique (GPS) were used to monitor recent crustal movements in Egypt since 1997. The non-tidal gravity changes were constrained by the vertical component of surface movements derived from the GPS observations. The gravity changes were used to understand the surface tectonics and geodynamic modelling of the Greater Cairo region after the occurrence of an earthquake of 1992. It was found that there is a certain relation showed by increasing of gravity values before the main seismic activity. As example, relative considerable increase of gravity values was noticed for the network between the epochs of 2000 and 2004. Otherwise, the temporal gravity variations were reported a considerable decrease in gravity values between the two campaigns of 2004 and 2007 for the same stations. This behaviour could explain by compressive deformation and strain build-up stage before the South western Cairo earthquake (July 31, 2005 with magnitude of 4.3) and the stress release stage occurred after the main event. The geodetic measurements showed that, the estimated horizontal velocities for almost of points are 5.5 mm/year in approximately NW direction.

Keywords: temporal gravity variations, geodynamics, greater Cairo, recent crustal movements, earthquakes

Procedia PDF Downloads 357
4674 The Spatial and Temporal Distribution of Ambient Benzene, Toluene, Ethylbenzene and Xylene Concentrations at an International Airport in South Africa

Authors: Ryan S. Johnson, Raeesa Moolla

Abstract:

Airports are known air pollution hotspots due to the variety of fuel driven activities that take place within the confines of them. As such, people working within airports are particularly vulnerable to exposure of hazardous air pollutants, including hundreds of aromatic hydrocarbons, and more specifically a group of compounds known as BTEX (viz. benzene, toluene, ethyl-benzene and xylenes). These compounds have been identified as being harmful to human and environmental health. Through the use of passive and active sampling methods, the spatial and temporal variability of benzene, toluene, ethyl-benzene and xylene concentrations within the international airport was investigated. Two sampling campaigns were conducted. In order to quantify the temporal variability of concentrations within the airport, an active sampling strategy using the Synspec Spectras Gas Chromatography 955 instrument was used. Furthermore, a passive sampling campaign, using Radiello Passive Samplers was used to quantify the spatial variability of these compounds. In addition, meteorological factors are known to affect the dispersal and dilution of pollution. Thus a Davis Pro-Weather 2 station was utilised in order to measure in situ weather parameters (viz. wind speed, wind direction and temperature). Results indicated that toluene varied on a daily, temporal scale considerably more than other concentrations. Toluene further exhibited a strong correlation with regards to the meteorological parameters, inferring that toluene was affected by these parameters to a greater degree than the other pollutants. The passive sampling campaign revealed BTEXtotal concentrations ranged between 12.95 – 124.04 µg m-3. From the results obtained it is clear that benzene, toluene, ethyl-benzene and xylene concentrations are heterogeneously spatially dispersed within the airport. Due to the slow wind speeds recorded over the passive sampling campaign (1.13 m s-1.), the hotspots were located close to the main concentration sources. The most significant hotspot was located over the main apron of the airport. It is recommended that further, extensive investigations into the seasonality of hazardous air pollutants at the airport is necessary in order for sound conclusions to be made about the temporal and spatial distribution of benzene, toluene, ethyl-benzene and xylene concentrations within the airport.

Keywords: airport, air pollution hotspot, BTEX concentrations, meteorology

Procedia PDF Downloads 195
4673 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features

Procedia PDF Downloads 109
4672 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 62
4671 Lagrangian Approach for Modeling Marine Litter Transport

Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo

Abstract:

The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.

Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift

Procedia PDF Downloads 183
4670 Proposal of Design Method in the Semi-Acausal System Model

Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented

Procedia PDF Downloads 475
4669 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System

Procedia PDF Downloads 544
4668 Groundwater Quality Monitoring in the Shoush Suburbs, Khouzestan Province, Iran

Authors: Mohammad Tahsin Karimi Nezhad, Zaynab Shadbahr, Ali Gholami

Abstract:

In recent years many attempts have been made to assess groundwater contamination by nitrates worldwide. The assessment of spatial and temporal variations of physico-chemical parameters of water is necessary to mange water quality. The objectives of the study were to evaluate spatial variability and temporal changes of hydrochemical factors by water sampling from 24 wells in the Shoush City suburb. The analysis was conducted for the whole area and for different land use and geological classes. In addition, nitrate concentration variability with descriptive parameters such as sampling depth, dissolved oxygen, and on ground nitrogen loadings was also investigated The results showed that nitrate concentrations did not exceed the standard limit (50 mg/l). EC of water samples, ranged from 900 to 1200 µs/cm, TDS from 775 to 830 mg/l and pH from 5.6 to 9.

Keywords: groundwater, GIS, water quality, Iran

Procedia PDF Downloads 425
4667 Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, intelligent agent, reservation system, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 472
4666 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 70
4665 Modeling of the Flow through an Earth Dam and Geotechnical Slope Analyzes

Authors: Ahmed Ferhati, Arezki Adjrad, Ratiba Mitiche-Kettab, Hakim Djafer Khodja

Abstract:

The porous media are omnipresent around us that they are natural as sand, clay, rocks, or manufactured like concretes, cement, and ceramics. The variety of porous environment indicates a wide material range which can be very different from each other. Their common point is to be made up of a solid matrix and a porous space. In our case of study, we made the modeling of the flows in porous environments through the massives as in the case of an earth dam. The computer code used (PLAXIS) offer the possibility of modeling of various structures, in particular, the works in lands because that it deals with the pore water pressure due to the underground flow and the calculation of the plastic deformations. To confirm results obtained by PLAXIS, GeoStudio SEEP/W code was used. This work treats modeling of flows and mechanical and hydraulic behavior of earth dam. A general framework which can fit the calculation of this kind of structures and the coupling of the soil consolidation and free surface flows was defined. In this study; we have confronted a real case modeling of an earth dam. It was shown, in particular, that it is possible to entirely lead the calculation of real dam and to get encouraging results from the hydraulic and mechanical point of view.

Keywords: analyzes, dam, flow, modeling, PLAXIS, seep/w, slope

Procedia PDF Downloads 301
4664 The Temporal Implications of Spatial Prospects

Authors: Zhuo Job Chen, Kevin Nute

Abstract:

The work reported examines potential linkages between spatial and temporal prospects, and more specifically, between variations in the spatial depth and foreground obstruction of window views, and observers’ sense of connection to the future. It was found that external views from indoor spaces were strongly associated with a sense of the future, that partially obstructing such a view with foreground objects significantly reduced its association with the future, and replacing it with a pictorial representation of the same scene (with no real actual depth) removed most of its temporal association. A lesser change in the spatial depth of the view, however, had no apparent effect on association with the future. While the role of spatial depth has still to be confirmed, the results suggest that spatial prospects directly affect temporal ones. The word “prospect” typifies the overlapping of the spatial and temporal in most human languages. It originated in classical times as a purely spatial term, but in the 16th century took on the additional temporal implication of an imagined view ahead, of the future. The psychological notion of prospection, then, has its distant origins in a spatial analogue. While it is not yet proven that space directly structures our processing of time at a physiological level, it is generally agreed that it commonly does so conceptually. The mental representation of possible futures has been a central part of human survival as a species (Boyer, 2008; Suddendorf & Corballis, 2007). A sense of the future seems critical not only practically, but also psychologically. It has been suggested, for example, that lack of a positive image of the future may be an important contributing cause of depression (Beck, 1974; Seligman, 2016). Most people in the developed world now spend more than 90% of their lives indoors. So any direct link between external views and temporal prospects could have important implications for both human well-being and building design. We found that the ability to see what lies in front of us spatially was strongly associated with a sense of what lies ahead temporally. Partial obstruction of a view was found to significantly reduce that sense connection to the future. Replacing a view with a flat pictorial representation of the same scene removed almost all of its connection with the future, but changing the spatial depth of a real view appeared to have no significant effect. While foreground obstructions were found to reduce subjects’ sense of connection to the future, they increased their sense of refuge and security. Consistent with Prospect and Refuge theory, an ideal environment, then, would seem to be one in which we can “see without being seen” (Lorenz, 1952), specifically one that conceals us frontally from others, without restricting our own view. It is suggested that these optimal conditions might be translated architecturally as screens, the apertures of which are large enough for a building occupant to see through unobstructed from close by, but small enough to conceal them from the view of someone looking from a distance outside.

Keywords: foreground obstructions, prospection, spatial depth, window views

Procedia PDF Downloads 114
4663 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 364
4662 Modeling Landscape Performance: Evaluating the Performance Benefits of the Olmsted Brothers’ Proposed Parkway Designs for Los Angeles

Authors: Aaron Liggett

Abstract:

This research focuses on the visionary proposal made by the Olmsted Brothers Landscape Architecture firm in the 1920s for a network of interconnected parkways in Los Angeles. Their envisioned parkways aimed to address environmental and cultural strains by providing green space for recreation, wildlife habitat, and stormwater management while serving as multimodal transportation routes. Although the parkways were never constructed, through an evidence-based approach, this research presents a framework for evaluating the potential functionality and success of the parkways by modeling and visualizing their quantitative and qualitative landscape performance and benefits. Historical documents and innovative digital modeling tools produce detailed analysis, modeling, and visualization of the parkway designs. A set of 1928 construction documents are used to analyze and interpret the design intent of the parkways. Grading plans are digitized in CAD and modeled in Sketchup to produce 3D visualizations of the parkway. Drainage plans are digitized to model stormwater performance. Planting plans are analyzed to model urban forestry and biodiversity. The EPA's Storm Water Management Model (SWMM) predicts runoff quantity and quality. The USDA Forests Service tools evaluate carbon sequestration and air quality. Spatial and overlay analysis techniques are employed to assess urban connectivity and the spatial impacts of the parkway designs. The study reveals how the integration of blue infrastructure, green infrastructure, and transportation infrastructure within the parkway design creates a multifunctional landscape capable of offering alternative spatial and temporal uses. The analysis demonstrates the potential for multiple functional, ecological, aesthetic, and social benefits to be derived from the proposed parkways. The analysis of the Olmsted Brothers' proposed Los Angeles parkways, which predated contemporary ecological design and resiliency practices, demonstrates the potential for providing multiple functional, ecological, aesthetic, and social benefits within urban designs. The findings highlight the importance of integrated blue, green, and transportation infrastructure in creating a multifunctional landscape that simultaneously serves multiple purposes. The research contributes new methods for modeling and visualizing landscape performance benefits, providing insights and techniques for informing future designs and sustainable development strategies.

Keywords: landscape architecture, ecological urban design, greenway, landscape performance

Procedia PDF Downloads 117
4661 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy

Authors: Ozgul Kartal, Wade Tillett, Lyn D. English

Abstract:

Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.

Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education

Procedia PDF Downloads 53
4660 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 361
4659 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves

Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi

Abstract:

Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.

Keywords: CFD modeling, ultrasound, mixing, mass transfer

Procedia PDF Downloads 171
4658 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 535
4657 Threat Modeling Methodology for Supporting Industrial Control Systems Device Manufacturers and System Integrators

Authors: Raluca Ana Maria Viziteu, Anna Prudnikova

Abstract:

Industrial control systems (ICS) have received much attention in recent years due to the convergence of information technology (IT) and operational technology (OT) that has increased the interdependence of safety and security issues to be considered. These issues require ICS-tailored solutions. That led to the need to creation of a methodology for supporting ICS device manufacturers and system integrators in carrying out threat modeling of embedded ICS devices in a way that guarantees the quality of the identified threats and minimizes subjectivity in the threat identification process. To research, the possibility of creating such a methodology, a set of existing standards, regulations, papers, and publications related to threat modeling in the ICS sector and other sectors was reviewed to identify various existing methodologies and methods used in threat modeling. Furthermore, the most popular ones were tested in an exploratory phase on a specific PLC device. The outcome of this exploratory phase has been used as a basis for defining specific characteristics of ICS embedded devices and their deployment scenarios, identifying the factors that introduce subjectivity in the threat modeling process of such devices, and defining metrics for evaluating the minimum quality requirements of identified threats associated to the deployment of the devices in existing infrastructures. Furthermore, the threat modeling methodology was created based on the previous steps' results. The usability of the methodology was evaluated through a set of standardized threat modeling requirements and a standardized comparison method for threat modeling methodologies. The outcomes of these verification methods confirm that the methodology is effective. The full paper includes the outcome of research on different threat modeling methodologies that can be used in OT, their comparison, and the results of implementing each of them in practice on a PLC device. This research is further used to build a threat modeling methodology tailored to OT environments; a detailed description is included. Moreover, the paper includes results of the evaluation of created methodology based on a set of parameters specifically created to rate threat modeling methodologies.

Keywords: device manufacturers, embedded devices, industrial control systems, threat modeling

Procedia PDF Downloads 72
4656 A Comparative Study on Creep Modeling in Composites

Authors: Roham Rafiee, Behzad Mazhari

Abstract:

Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers.

Keywords: creep, comparative study, modeling, composite materials

Procedia PDF Downloads 430
4655 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach

Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez

Abstract:

The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.

Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling

Procedia PDF Downloads 21
4654 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception

Procedia PDF Downloads 415
4653 From Modeling of Data Structures towards Automatic Programs Generating

Authors: Valentin P. Velikov

Abstract:

Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.

Keywords: computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling

Procedia PDF Downloads 292
4652 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data

Authors: M. Yilmaz, I. Yilmaz, M. Uysal

Abstract:

The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.

Keywords: free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity

Procedia PDF Downloads 160
4651 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization

Procedia PDF Downloads 429
4650 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software

Procedia PDF Downloads 321
4649 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers

Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho

Abstract:

In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modeling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.

Keywords: plate heat exchanger, optimization, modeling, simulation

Procedia PDF Downloads 508
4648 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 137
4647 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 424
4646 Seismic Performance Evaluation of Existing Building Using Structural Information Modeling

Authors: Byungmin Cho, Dongchul Lee, Taejin Kim, Minhee Lee

Abstract:

The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated.

Keywords: existing building, nonlinear analysis, seismic performance, structural information modeling

Procedia PDF Downloads 373