Search results for: macroeconomic
9 The Impact of the Global Financial Crisis on the Performance of Czech Industrial Enterprises
Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak
Abstract:
The global financial crisis that erupted in 2008 is associated mainly with the debt crisis. It quickly spread globally through financial markets, international banks and trade links, and affected many economic sectors. Measured by the index of the year-on-year change in GDP and industrial production, the consequences of the global financial crisis manifested themselves with some delay also in the Czech economy. This can be considered a result of the overwhelming export orientation of Czech industrial enterprises. These events offer an important opportunity to study how financial and macroeconomic instability affects corporate performance. Corporate performance factors have long been given considerable attention. It is therefore reasonable to ask whether the findings published in the past are also valid in the times of economic instability and subsequent recession. The decisive factor in effective corporate performance measurement is the existence of an appropriate system of indicators that are able to assess progress in achieving corporate goals. Performance measures may be based on non-financial as well as on financial information. In this paper, financial indicators are used in combination with other characteristics, such as the firm size and ownership structure. Financial performance is evaluated based on traditional performance indicators, namely, return on equity and return on assets, supplemented with indebtedness and current liquidity indices. As investments are a very important factor in corporate performance, their trends and importance were also investigated by looking at the ratio of investments to previous year’s sales and the rate of reinvested earnings. In addition to traditional financial performance indicators, the Economic Value Added was also used. Data used in the research were obtained from a questionnaire survey administered in industrial enterprises in the Czech Republic and from AMADEUS (Analyse Major Database from European Sources), from which accounting data of companies were obtained. Respondents were members of the companies’ senior management. Research results unequivocally confirmed that corporate performance dropped significantly in the 2010-2012 period, which can be considered a result of the global financial crisis and a subsequent economic recession. It was reflected mainly in the decreasing values of profitability indicators and the Economic Value Added. Although the total year-on-year indebtedness declined, intercompany indebtedness increased. This can be considered a result of impeded access of companies to bank loans due to the credit crunch. Comparison of the results obtained with the conclusions of previous research on a similar topic showed that the assumption that firms under foreign control achieved higher performance during the period investigated was not confirmed.Keywords: corporate performance, foreign control, intercompany indebtedness, ratio of investment
Procedia PDF Downloads 3338 Capital Accumulation and Unemployment in Namibia, Nigeria and South Africa
Authors: Abubakar Dikko
Abstract:
The research investigates the causes of unemployment in Namibia, Nigeria and South Africa, and the role of Capital Accumulation in reducing the unemployment profile of these economies as proposed by the post-Keynesian economics. This is conducted through extensive review of literature on the NAIRU models and focused on the post-Keynesian view of unemployment within the NAIRU framework. The NAIRU (non-accelerating inflation rate of unemployment) model has become a dominant framework used in macroeconomic analysis of unemployment. The study views the post-Keynesian economics arguments that capital accumulation is a major determinant of unemployment. Unemployment remains the fundamental socio-economic challenge facing African economies. It has been a burden to citizens of those economies. Namibia, Nigeria and South Africa are great African nations battling with high unemployment rates. In 2013, the countries recorded high unemployment rates of 16.9%, 23.9% and 24.9% respectively. Most of the unemployed in these economies comprises of youth. Roughly about 40% working age South Africans has jobs, whereas in Nigeria and Namibia is less than that. Unemployment in Africa has wide implications on households which has led to extensive poverty and inequality, and created a rampant criminality. Recently in South Africa there has been a case of xenophobic attacks which were caused by the citizens of the country as a result of unemployment. The high unemployment rate in the country led the citizens to chase away foreigners in the country claiming that they have taken away their jobs. The study proposes that there is a strong relationship between capital accumulation and unemployment in Namibia, Nigeria and South Africa, and capital accumulation is responsible for high unemployment rates in these countries. For the economies to achieve steady state level of employment and satisfactory level of economic growth and development there is need for capital accumulation to take place. The countries in the study have been selected after a critical research and investigations. They are selected based on the following criteria; African economies with high unemployment rates above 15% and have about 40% of their workforce unemployed. This level of unemployment is the critical level of unemployment in Africa as expressed by International Labour Organization (ILO). The African countries with low level of capital accumulation. Adequate statistical measures have been employed using a time-series analysis in the study and the results revealed that capital accumulation is the main driver of unemployment performance in the chosen African countries. An increase in the accumulation of capital causes unemployment to reduce significantly. The results of the research work will be useful and relevant to federal governments and ministries, departments and agencies (MDAs) of Namibia, Nigeria and South Africa to resolve the issue of high and persistent unemployment rates in their economies which are great burden that slows growth and development of developing economies. Also, the result can be useful to World Bank, African Development Bank and International Labour Organization (ILO) in their further research and studies on how to tackle unemployment in developing and emerging economies.Keywords: capital accumulation, unemployment, NAIRU, Post-Keynesian economics
Procedia PDF Downloads 2637 Roads and Agriculture: Impacts of Connectivity in Peru
Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte
Abstract:
A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.Keywords: agriculture devolepment, market access, road connectivity, regional development
Procedia PDF Downloads 2056 Tourism Policy Challenges in Post-Soviet Georgia
Authors: Merab Khokhobaia
Abstract:
The research of Georgian tourism policy challenges is important, as the tourism can play an increasing role for the economic growth and improvement of standard of living of the country even with scanty resources, at the expense of improved creative approaches. It is also important to make correct decisions at macroeconomic level, which will be accordingly reflected in the successful functioning of the travel companies and finally, in the improvement of economic indicators of the country. In order to correctly orient sectoral policy, it is important to precisely determine its role in the economy. Development of travel industry has been considered as one of the priorities in Georgia; the country has unique cultural heritage and traditions, as well as plenty of natural resources, which are a significant precondition for the development of tourism. Despite the factors mentioned above, the existing resources are not completely utilized and exploited. This work represents a study of subjective, as well as objective reasons of ineffective functioning of the sector. During the years of transformation experienced by Georgia, the role of travel industry in economic development of the country represented the subject of continual discussions. Such assessments were often biased and they did not rest on specific calculations. This topic became especially popular on the ground of market economy, because reliable statistical data have a particular significance in the designing of tourism policy. In order to deeply study the aforementioned issue, this paper analyzes monetary, as well as non-monetary indicators. The research widely included the tourism indicators system; we analyzed the flaws in reporting of the results of tourism sector in Georgia. Existing defects are identified and recommendations for their improvement are offered. For stable development tourism, similarly to other economic sectors, needs a well-designed policy from the perspective of national, as well as local, regional development. The tourism policy must be drawn up in order to efficiently achieve our goals, which were established in short-term and long-term dynamics on the national or regional scale of specific country. The article focuses on the role and responsibility of the state institutes in planning and implementation of the tourism policy. The government has various tools and levers, which may positively influence the processes. These levers are especially important in terms of international, as well as internal tourism development. Within the framework of this research, the regulatory documents, which are in force in relation to this industry, were also analyzed. The main attention is turned to their modernization and necessity of their compliance with European standards. It is a current issue to direct the efforts of state policy on support of business by implementing infrastructural projects, as well as by development of human resources, which may be possible by supporting the relevant higher and vocational studying-educational programs.Keywords: regional development, tourism industry, tourism policy, transition
Procedia PDF Downloads 2635 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”
Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani
Abstract:
The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density
Procedia PDF Downloads 1244 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1423 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 722 Energy Refurbishment of University Building in Cold Italian Climate: Energy Audit and Performance Optimization
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The Directive 2010/31/EC 'Directive of the European Parliament and of the Council of 19 may 2010 on the energy performance of buildings' moved the targets of the previous version toward more ambitious targets, for instance by establishing that, by 31 December 2020, all new buildings should demand nearly zero-energy. Moreover, the demonstrative role of public buildings is strongly affirmed so that also the target nearly zero-energy buildings is anticipated, in January 2019. On the other hand, given the very low turn-over rate of buildings (in Europe, it ranges between 1-3%/yearly), each policy that does not consider the renovation of the existing building stock cannot be effective in the short and medium periods. According to this proposal, the study provides a novel, holistic approach to design the refurbishment of educational buildings in colder cities of Mediterranean regions enabling stakeholders to understand the uncertainty to use numerical modelling and the real environmental and economic impacts of adopting some energy efficiency technologies. The case study is a university building of Molise region in the centre of Italy. The proposed approach is based on the application of the cost-optimal methodology as it is shown in the Delegate Regulation 244/2012 and Guidelines of the European Commission, for evaluating the cost-optimal level of energy performance with a macroeconomic approach. This means that the refurbishment scenario should correspond to the configuration that leads to lowest global cost during the estimated economic life-cycle, taking into account not only the investment cost but also the operational costs, linked to energy consumption and polluting emissions. The definition of the reference building has been supported by various in-situ surveys, investigations, evaluations of the indoor comfort. Data collection can be divided into five categories: 1) geometrical features; 2) building envelope audit; 3) technical system and equipment characterization; 4) building use and thermal zones definition; 5) energy building data. For each category, the required measures have been indicated with some suggestions for the identifications of spatial distribution and timing of the measurements. With reference to the case study, the collected data, together with a comparison with energy bills, allowed a proper calibration of a numerical model suitable for the hourly energy simulation by means of EnergyPlus. Around 30 measures/packages of energy, efficiency measure has been taken into account both on the envelope than regarding plant systems. Starting from results, two-point will be examined exhaustively: (i) the importance to use validated models to simulate the present performance of building under investigation; (ii) the environmental benefits and the economic implications of a deep energy refurbishment of the educational building in cold climates.Keywords: energy simulation, modelling calibration, cost-optimal retrofit, university building
Procedia PDF Downloads 1781 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 66