Search results for: spatial learning
7783 Learning outside the Box by Using Memory Techniques Skill: Case Study in Indonesia Memory Sports Council
Authors: Muhammad Fajar Suardi, Fathimatufzzahra, Dela Isnaini Sendra
Abstract:
Learning is an activity that has been used to do, especially for a student or academics. But a handful of people have not been using and maximizing their brains work and some also do not know a good brain work time in capturing the lessons, so that knowledge is absorbed is also less than the maximum. Indonesia Memory Sports Council (IMSC) is an institution which is engaged in the performance of the brain and the development of effective learning methods by using several techniques that can be used in considering the lessons and knowledge to grasp well, including: loci method, substitution method, and chain method. This study aims to determine the techniques and benefits of using the method given in learning and memorization by applying memory techniques taught by Indonesia Memory Sports Council (IMSC) to students and the difference if not using this method. This research uses quantitative research with survey method addressed to students of Indonesian Memory Sports Council (IMSC). The results of this study indicate that learn, understand and remember the lesson using the techniques of memory which is taught in Indonesia Memory Sport Council is very effective and faster to absorb the lesson than learning without using the techniques of memory, and this affects the academic achievement of students in each educational institution.Keywords: chain method, Indonesia memory sports council, loci method, substitution method
Procedia PDF Downloads 2907782 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement
Authors: Kimberley Kennedy
Abstract:
The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement
Procedia PDF Downloads 1197781 Language Development and Learning about Violence
Authors: Karen V. Lee
Abstract:
The background and significance of this study involves research about a music teacher discovering how language development and learning can help her overcome harmful and lasting consequences from sexual violence. Education about intervention resources from language development that helps her cope with consequences influencing her career as teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve available education from learning resources to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how language development and learning provide helpful resources to victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life. In conclusion, the research has a reflexive storied framework that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using language development and learning for intervention resources can provide transformative aspects that contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Language development and learning supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.Keywords: intervention, language development and learning, sexual violence, story
Procedia PDF Downloads 3317780 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 1167779 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2927778 Instance Selection for MI-Support Vector Machines
Authors: Amy M. Kwon
Abstract:
Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning
Procedia PDF Downloads 347777 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms
Authors: Volkan Kaya, Ersin Elbasi
Abstract:
Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.Keywords: watermarking, medical image, frequency domain, least significant bits, security
Procedia PDF Downloads 2877776 Instruct Students Effective Ways to Reach an Advanced Level after Graduation
Authors: Huynh Tan Hoi
Abstract:
Considered as one of the hardest languages in the world, Japanese is still the language that many young people choose to learn. Today, with the development of technology, learning foreign languages in general and Japanese language, in particular, is not an impossible barrier. Learning materials are not only from paper books, songs but also through software programs of smartphones or computers. Especially, students who begin to explore effective skills to study this language need to access modern technologies to improve their learning much better. When using the software, some students may feel embarrassed and challenged, but everything would go smoothly after a few days. After completing the course, students will get more knowledge, achieve a higher knowledge such as N2 or N1 Japanese Language Proficiency Test Certificate. In this research paper, 35 students who are studying at Ho Chi Minh City FPT University were asked to complete the questionnaire at the beginning of July up to August of 2018. Through this research, we realize that with the guidance of lecturers, the necessity of using modern software and some effective methods are indispensable in term of improving quality of teaching and learning process.Keywords: higher knowledge, Japanese, methods, software, students
Procedia PDF Downloads 2257775 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth
Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson
Abstract:
Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.Keywords: dynamic accessibility, hot spot, transport research, TomTom® API
Procedia PDF Downloads 3887774 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 1157773 An Assessment of Digital Platforms, Student Online Learning, Teaching Pedagogies, Research and Training at Kenya College of Accounting University
Authors: Jasmine Renner, Alice Njuguna
Abstract:
The booming technological revolution is driving a change in the mode of delivery systems especially for e-learning and distance learning in higher education. The report and findings of the study; an assessment of digital platforms, student online learning, teaching pedagogies, research and training at Kenya College of Accounting University (hereinafter 'KCA') was undertaken as a joint collaboration project between the Carnegie African Diaspora Fellowship and input from the staff, students and faculty at KCA University. The participants in this assessment/research met for selected days during a six-week period during which, one-one consultations, surveys, questionnaires, foci groups, training, and seminars were conducted to ascertain 'online learning and teaching, curriculum development, research and training at KCA.' The project was organized into an eight-week project workflow with each week culminating in project activities designed to assess digital online teaching and learning at KCA. The project also included the training of distance learning instructors at KCA and the evaluation of KCA’s distance platforms and programs. Additionally, through a curriculum audit and redesign, the project sought to enhance the curriculum development activities related to of distance learning at KCA. The findings of this assessment/research represent the systematic deliberate process of gathering, analyzing and using data collected from DL students, DL staff and lecturers and a librarian personnel in charge of online learning resources and access at KCA. We engaged in one-on-one interviews and discussions with staff, students, and faculty and collated the findings to inform practices that are effective in the ongoing design and development of eLearning earning at KCA University. Overall findings of the project led to the following recommendations. First, there is a need to address infrastructural challenges that led to poor internet connectivity for online learning, training needs and content development for faculty and staff. Second, there is a need to manage cultural impediments within KCA; for example fears of vital change from one platform to another for effectiveness and Institutional goodwill as a vital promise of effective online learning. Third, at a practical and short-term level, the following recommendations based on systematic findings of the research conducted were as follows: there is a need for the following to be adopted at KCA University to promote the effective adoption of online learning: a) an eLearning compatible faculty lab, b) revision of policy to include an eLearn strategy or strategic management, c) faculty and staff recognitions engaged in the process of training for the adoption and implementation of eLearning and d) adequate website resources on eLearning. The report and findings represent a comprehensive approach to a systematic assessment of online teaching and learning, research and training at KCA.Keywords: e-learning, digital platforms, student online learning, online teaching pedagogies
Procedia PDF Downloads 1917772 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco
Authors: Abdelghani Boudiaf
Abstract:
The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.Keywords: changing mentalities, continuing training, organizational learning, quality management system, skills development
Procedia PDF Downloads 1107771 Explanatory Analysis the Effect of Urban Form and Monsoon on Cooling Effect of Blue-Green Spaces: A Case Study in Singapore
Authors: Yangyang Zhou
Abstract:
Rapid urbanization has caused the urban heat island effect, which will threaten the physical and mental health of urban dwellers, and blue-green spaces can mitigate the thermal environment effectively. In this study, we calculated the average LST from 2013 to 2022, Northeastmonsoon and Southwestmonsoon of Singapore, and compared the cooling effect differences of the four blue-green spaces. Then, spatial correlation and spatial autoregression model were conducted between cooling distance intensity (CDI) and 11 independent variables. The results reveal that (1) the highest mean land surface temperature (LST) in all years, Northeast monsoon and Southwest monsoon can reach 42.8 ℃, 41.6 ℃, and 42.9 ℃, respectively. (2) the temperature-changing tendency in the three time periods is similar to each other, while the overall LST changing trends of the Southwest monsoon are lower than all year and Northeast monsoon. (3) the cooling distance of the sea can reach 1200 m, and CEI is highly positively correlated with NDBI and BuildD and highly negatively correlated with SVF, NDVI and TreeH. LISA maps showed that the zones that passed the significance test between CDI, NDBI and BuildD were nearly the same locations; the same phenomenon also happened between CDI and SVF, NDVI and TreeH. (4) SLM had better regression results than SEM in all the regions; only 3 independent variables passed the significance test in region 1, and most independent variables can pass the significance test in other regions. Variables DIST and NDBI were significantly affecting the CDI in all the regions. In the whole region, all the variables passed the significance test, and NDBI (1.61), SVF (0.95) and NDVI (0.5) had the strongest influence on CDI.Keywords: cooling effect, land surface temperature, thermal environment mitigation, spatial autoregression model
Procedia PDF Downloads 267770 Geo-Spatial Methods to Better Understand Urban Food Deserts
Authors: Brian Ceh, Alison Jackson-Holland
Abstract:
Food deserts are a reality in some cities. These deserts can be described as a shortage of healthy food options within close proximity of consumers. The shortage in this case is typically facilitated by a lack of stores in an urban area that provide adequate fruit and vegetable choices. This study explores new avenues to better understand food deserts by examining modes of transportation that are available to shoppers or consumers, e.g. walking, automobile, or public transit. Further, this study is unique in that it not only explores the location of large grocery stores, but small grocery and convenience stores too. In this study, the relationship between some socio-economic indicators, such as personal income, are also explored to determine any possible association with food deserts. In addition, to help facilitate our understanding of food deserts, complex network spatial models that are built on adequate algorithms are used to investigate the possibility of food deserts in the city of Hamilton, Canada. It is found that Hamilton, Canada is adequate serviced by retailers who provide healthy food choices and that the food desert phenomena is almost absent.Keywords: Canada, desert, food, Hamilton, store
Procedia PDF Downloads 2417769 Evaluating and Supporting Student Engagement in Online Learning
Authors: Maria Hopkins
Abstract:
Research on student engagement is founded on a desire to improve the quality of online instruction in both course design and delivery. A high level of student engagement is associated with a wide range of educational practices including purposeful student-faculty contact, peer to peer contact, active and collaborative learning, and positive factors such as student satisfaction, persistence, achievement, and learning. By encouraging student engagement, institutions of higher education can have a positive impact on student success that leads to retention and degree completion. The current research presents the results of an online student engagement survey which support faculty teaching practices to maximize the learning experience for online students. The ‘Indicators of Engaged Learning Online’ provide a framework that measures level of student engagement. Social constructivism and collaborative learning form the theoretical basis of the framework. Social constructivist pedagogy acknowledges the social nature of knowledge and its creation in the minds of individual learners. Some important themes that flow from social constructivism involve the importance of collaboration among instructors and students, active learning vs passive consumption of information, a learning environment that is learner and learning centered, which promotes multiple perspectives, and the use of social tools in the online environment to construct knowledge. The results of the survey indicated themes that emphasized the importance of: Interaction among peers and faculty (collaboration); Timely feedback on assignment/assessments; Faculty participation and visibility; Relevance and real-world application (in terms of assignments, activities, and assessments); and Motivation/interest (the need for faculty to motivate students especially those that may not have an interest in the coursework per se). The qualitative aspect of this student engagement study revealed what instructors did well that made students feel engaged in the course, but also what instructors did not do well, which could inform recommendations to faculty when expectations for teaching a course are reviewed. Furthermore, this research provides evidence for the connection between higher student engagement and persistence and retention in online programs, which supports our rationale for encouraging student engagement, especially in the online environment because attrition rates are higher than in the face-to-face environment.Keywords: instructional design, learning effectiveness, online learning, student engagement
Procedia PDF Downloads 2907768 Research on Old Community Planning Strategy in Mountainous City from The Perspective of Physical Activity: A Case Study of Daxigou Street Community, Chongqing
Authors: Yang Liandong
Abstract:
The rapid development of cities has triggered a series of urban health problems. Residents' daily lives have generally changed to long-term unhealthy work and rest, and the prevalence of chronic diseases in the population is on the rise. Promoting physical activity is an effective way to enhance the population's health and reduce the risk of various chronic diseases. As the most basic unit of the city, the community is the living space where residents use the highest frequency of daily activities and also the best space carrier for people to carry out all kinds of physical activities, and its planning research is of great significance for promoting physical activities. Under special conditions, the old communities in mountainous cities present compact and three-dimensional spatial characteristics, and there are problems such as disordered spatial organization, scattered distribution, and low utilization rates. This paper selects four communities in Daxigou Street, Yuzhong District, Chongqing as the research object, analyzes the current situation of the research cases through literature combing and field investigation and interviews, and puts forward the planning strategies for promoting physical activity in old communities in mountain cities from four aspects: building a convenient and smooth public space system, creating a diversified and shared activity space, creating a beautiful and healing community landscape, and providing convenient and perfect supporting facilities, to provide a certain reference for the healthy development of old communities in mountain cities.Keywords: physical activity, community planning, old communities in mountain cities, public space optimization, spatial fairness
Procedia PDF Downloads 267767 A Learning Effects Research Applied a Mobile Guide System with Augmented Reality for Education Center
Authors: Y. L. Chang, Y. H. Huang
Abstract:
This study designed a mobile guide system that integrates the design principles of guidance and interpretation with augmented reality (AR) as an auxiliary tool for National Taiwan Science Education Center guidance and explored the learning performance of participants who were divided into two visiting groups: AR-guided mode and non-guided mode (without carrying any auxiliary devices). The study included 96 college students as participants and employed a quasi-experimental research design. This study evaluated the learning performance of education center students aided with different guided modes, including their flow experience, activity involvement, learning effects, as well as their attitude and acceptance of using the guide systems. The results showed that (a) the AR guide promoted visitors’ flow experience; (b) the AR-guidance activity involvement and flow experience having a significant positive effect; (c) most of the visitors of mobile guide system with AR elicited a positive response and acceptance attitude. These results confirm the necessity of human–computer–context interaction. Future research can continue exploring the advantages of enhanced learning effectiveness, activity involvement, and flow experience through application of the results of this study.Keywords: augmented reality, mobile guide system, informal learning, flow experience, activity involvement
Procedia PDF Downloads 2317766 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 327765 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 2657764 Co-Seismic Gravity Gradient Changes of the 2006–2007 Great Earthquakes in the Central Kuril Islands from GRACE Observations
Authors: Armin Rahimi
Abstract:
In this study, we reveal co-seismic signals of two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of the gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore that preseismic activity can be better illustrated. We show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from − 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from − 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.Keywords: GRACE observation, gravitational gradient changes, Kuril island earthquakes, PSGRN/PSCMP
Procedia PDF Downloads 2767763 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1537762 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 1407761 Adopt and Apply Research-Supported Standards and Practices to Ensure Quality for Online Education and Digital Learning at Course, Program and Institutional Levels
Authors: Yaping Gao
Abstract:
With the increasing globalization of education and the continued momentum and wider adoption of online and digital learning all over the world, post pandemic, how could best practices and extensive experience gained from the higher education community over the past few decades be adopted and adapted to benefit international communities, which can be vastly different culturally and pedagogically? How can schools and institutions adopt, adapt and apply these proven practices to develop strategic plans for digital transformation at institutional levels, and to improve or create quality online or digital learning environments at course and program levels to help all students succeed? The presenter will introduce the primary components of the US-based quality assurance process, including : 1) five sets of research-supported standards to guide the design, development and review of online and hybrid courses; 2) professional development offerings and pathways for administrators, faculty and instructional support staff; 3) a peer-review process for course/program reviews resulting in constructive recommendations for continuous improvement, certification of quality and international recognition; and 4) implementation of the quality assurance process on a continuum to program excellence, achievement of institutional goals, and facilitation of accreditation process and success. Regardless language, culture, pedagogical practices, or technological infrastructure, the core elements of quality teaching and learning remain the same across all delivery formats. What is unique is how to ensure quality of teaching and learning in online education and digital learning. No one knows all the answers to everything but no one needs to reinvent the wheel either. Together the international education community can support and learn from each other to achieve institutional goals and ensure all students succeed in the digital learning environments.Keywords: Online Education, Digital Learning, Quality Assurance, Standards and Best Practices
Procedia PDF Downloads 257760 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School
Authors: Diriba Gemechu, Lamessa Abebe
Abstract:
The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.Keywords: academic achievement, comparison group, cooperative learning, experimental group
Procedia PDF Downloads 2467759 Virtual Player for Learning by Observation to Assist Karate Training
Authors: Kazumoto Tanaka
Abstract:
It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player
Procedia PDF Downloads 2757758 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 1967757 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 807756 Effect of E-Governance and E-Learning Platform on Access to University Education by Public Servants in Nigeria
Authors: Nwamaka Patricia Ibeme, Musa Zakari
Abstract:
E-learning is made more effective because; it is enable student to students to easily interact, share, and collaborate across time and space with the help of e-governance platform. Zoom and the Microsoft classroom team can invite students from all around the world to join a conversation on a certain subject simultaneously. E-governance may be able to work on problem solving skills, as well as brainstorming and developing ideas. As a result of the shared experiences and knowledge, students are able to express themselves and reflect on their own learning." For students, e-governance facilities provide greater opportunity for students to build critical (higher order) thinking abilities through constructive learning methods. Students' critical thinking abilities may improve with more time spent in an online classroom. Students' inventiveness can be enhanced through the use of computer-based instruction. Discover multimedia tools and produce products in the styles that are easily available through games, Compact Disks, and television. The use of e-learning has increased both teaching and learning quality by combining student autonomy, capacity, and creativity over time in developed countries." Teachers are catalysts for the integration of technology through Information and Communication Technology, and e-learning supports teaching by simplifying access to course content." Creating an Information and Communication Technology class will be much easier if educational institutions provide teachers with the assistance, equipment, and resources they need. The study adopted survey research design. The populations of the study are Students and staff. The study adopted a simple random sampling technique to select a representative population. Both primary and secondary method of data collection was used to obtain the data. A chi-square statistical technique was used to analyze. Finding from the study revealed that e-learning has increase accesses to universities educational by public servants in Nigeria. Public servants in Nigeria have utilized e-learning and Online Distance Learning (ODL) programme to into various degree programmes. Finding also shows that E-learning plays an important role in teaching because it is oriented toward the use of information and communication technologies that have become a part of the everyday life and day-to-day business. E-learning contributes to traditional teaching methods and provides many advantages to society and citizens. The study recommends that the e-learning tools and internet facilities should be upgrade to foster any network challenges in the online facilitation and lecture delivery system.Keywords: E-governance, E-learning, online distance learning, university education public servants, Nigeria
Procedia PDF Downloads 697755 Project Management at University: Towards an Evaluation Process around Cooperative Learning
Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R
Abstract:
The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training
Procedia PDF Downloads 1697754 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning
Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj
Abstract:
Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net
Procedia PDF Downloads 155