Search results for: weather parameter
1200 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip
Authors: Gilbert Makanda
Abstract:
The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.Keywords: free convection, suction/injection, partial slip, viscous dissipation
Procedia PDF Downloads 2431199 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method
Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola
Abstract:
In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.Keywords: constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity
Procedia PDF Downloads 3101198 Software Reliability Prediction Model Analysis
Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability
Procedia PDF Downloads 4631197 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflect array antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflect array antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180 MHz to 200 MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10 GHz resonant frequency with a patch volume of 2.71 mm3 as compared to 3.47 mm3 required for rectangular patch without slot.Keywords: liquid crystal, tunable reflect array, frequency tunability, dynamic phase range
Procedia PDF Downloads 5181196 Understanding Evolutionary Algorithms through Interactive Graphical Applications
Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez
Abstract:
It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.Keywords: education, evolutionary algorithms, evolution strategies, interactive learning applications
Procedia PDF Downloads 3371195 Short Arc Technique for Baselines Determinations
Authors: Gamal F.Attia
Abstract:
The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.Keywords: baselines, short arc, dynamical, gravitational field
Procedia PDF Downloads 4611194 Assessment of Exposure Dose Rate from Scattered X-Radiation during Diagnostic Examination in Nigerian University Teaching Hospital
Authors: Martins Gbenga., Orosun M. M., Olowookere C. J., Bamidele Lateef
Abstract:
Radiation exposures from diagnostic medical examinations are almost always justified by the benefits of accurate diagnosis of possible disease conditions. The aim is to assess the influence of selected exposure parameters on scattered dose rates. The research was carried out using Gamma Scout software installation on the Computer system (Laptop) to record the radiation counts, pulse rate, and dose rate for 136 patients. Seventy-three patients participated in the male category with 53.7%, while 63 females participated with 46.3%. The mean and standard deviation value for each parameter is recorded, and tube potential is within 69.50±11.75 ranges between 52.00 and 100.00, tube current is within 23.20±17.55 ranges between 4.00 and 100.00, focus skin distance is within 73.195±33.99 and ranges between 52.00 and 100.00. Dose Rate (DRate in µSv/hr) is significant at an interval of 0.582 and 0.587 for tube potential and body thickness (cm). Tube potential is significant at an interval of 0.582 and 0.842 of DRate (µSv/hr) and body thickness (cm). The study was compared with other studies. The exposure parameters selected during each examination contributed to scattered radiation. A quality assurance program (QAP) is advised for the center.Keywords: x-radiation, exposure rate, dose rate, tube potentials, scattered radiation, diagnostic examination
Procedia PDF Downloads 1431193 An Investigation on Overstrength Factor (Ω) of Reinforced Concrete Buildings in Turkish Earthquake Draft Code (TEC-2016)
Authors: M. Hakan Arslan, I. Hakkı Erkan
Abstract:
Overstrength factor is an important parameter of load reduction factor. In this research, the overstrength factor (Ω) of reinforced concrete (RC) buildings and the parameters of Ω in TEC-2016 draft version have been explored. For this aim, 48 RC buildings have been modeled according to the current seismic code TEC-2007 and Turkish Building Code-500-2000 criteria. After modelling step, nonlinear static pushover analyses have been applied to these buildings by using TEC-2007 Section 7. After the nonlinear pushover analyses, capacity curves (lateral load-lateral top displacement curves) have been plotted for 48 RC buildings. Using capacity curves, overstrength factors (Ω) have been derived for each building. The obtained overstrength factor (Ω) values have been compared with TEC-2016 values for related building types, and the results have been interpreted. According to the obtained values from the study, overstrength factor (Ω) given in TEC-2016 draft code is found quite suitable.Keywords: reinforced concrete buildings, overstrength factor, earthquake, static pushover analysis
Procedia PDF Downloads 3541192 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net
Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi
Abstract:
Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation
Procedia PDF Downloads 1811191 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 1421190 Dynamic Effects of Charitable Giving in a Ramsey Model
Authors: Riham Barbar
Abstract:
This paper studies the dynamic effects of charitable giving in a Ramsey model à la Becker and Foias (1994), such that heterogeneity is reduced to two types of agents: rich and poor. It is assumed that rich show a great concern for poor and enjoy giving. The introduction of charitable giving in this paper is inspired from the notion of Zakat (borrowed from the Islamic Economics) and is defined according to the warm-glow of Andreoni (1990). In this framework, we prove the existence of a steady state where only the patient agent holds capital. Furthermore, we show that local indetermincay appears. While moderate values of charitable-giving elasticity makes the appearance of endogenous fluctuations due to self-fulfilling expectations more likely, high values of this elasticity stabilizes endogenous fluctuations, by narrowing down the range of parameter values compatible with local indeterminacy and may rule out expectations-driven fluctuations if it exceeds certain threshold. Finally, cycles of period two emerge. However, charitable-giving makes it less likely for these cycles to emerge.Keywords: charitable giving, warm-glow, bifurcations, heterogeneous agents, indeterminacy, self-fulfilling expectations, endogenous fluctuations
Procedia PDF Downloads 3141189 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution
Authors: Md. Rashidul Hasan, Atikur Rahman Baizid
Abstract:
The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function
Procedia PDF Downloads 3811188 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows
Authors: Nadim Zgheib, Sivaramakrishnan Balachandar
Abstract:
We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis
Procedia PDF Downloads 1851187 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 5341186 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete
Authors: Jiaqi Huang, Lu Jin
Abstract:
Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete
Procedia PDF Downloads 1781185 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen
Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz
Abstract:
Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.Keywords: rheological properties, DSR test, polymer mixed with bitumen (PMB), complex modulus, lime
Procedia PDF Downloads 1841184 Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement
Authors: Ahmed N. Shmroukh, I. M. S. Taha, A. M. Abdel-Ghany, M. Attalla
Abstract:
Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration.Keywords: fog systems, measuring air dry bulb temperature, temperature measurement, vortex separator
Procedia PDF Downloads 2951183 Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies
Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas
Abstract:
Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future.Keywords: climate change, groundwater, management strategies, tropical karst island, Rote Island, Indonesia
Procedia PDF Downloads 1531182 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time
Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent
Abstract:
The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point
Procedia PDF Downloads 7511181 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 3051180 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method
Authors: Omer Oral, Y. Emre Yilmaz
Abstract:
Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization
Procedia PDF Downloads 1361179 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector
Authors: Victor Birikorang Danquah
Abstract:
Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy
Procedia PDF Downloads 1791178 Kinetic and Thermodynamic Modified Pectin with Chitosan by Forming Polyelectrolyte Complex Adsorbent to Remediate of Pb(II)
Authors: Budi Hastuti, Mudasir, Dwi Siswanta, Triyono
Abstract:
Biosorbent, such as pectin and chitosan, are usually produced with low physical stability, thus the materials need to be modified. In this research, the physical characteristic of adsorbent was increased by grafting chitosan using acetate carboxymetyl chitosan (CC). Further, CC and Pectin (Pec) were crosslinked using cross-linking agent BADGE (bis phenol A diglycidyl ether) to get CC-Pec-BADGE (CPB) adsorbent. The cross-linking processes aim to form stable structure and resistance on acidic media. Furthermore, in order to increase the adsorption capacity in removing Pb(II), the adsorbent was added with NaCl to form macroporous adsorbent named CCPec-BADGE-Na (CPB-Na). The physical and chemical characteristics of the porogenic adsorbent structure were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The adsorption parameter of CPB-Na to adsorb Pb(II) ion was determined. The kinetics and thermodynamics of the bath sorption of Pb(II) on CPB-Na adsorbent and using chitosan and pectin as a comparison were also studied. The results showed that the CPB-Na biosorbent was stable on acidic media. It had a rough and porous surface area, increased and gave higher sorption capacity for removal of Pb(II) ion. The CPB-Na 1/1 and 1/3 adsorbent adsorbed Pb(II) with adsorption capacity of 45.48 mg/g and 45.97 mg/g respectively, whereas pectin and chitosan were of 39.20 mg /g and 24.67 mg /g respectively.Keywords: porogen, Pectin, Carboxymethyl Chitosan (CC), CC- Pec-BADGE-Na
Procedia PDF Downloads 1561177 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions
Procedia PDF Downloads 4751176 Red Blood Cells Deformability: A Chaotic Process
Authors: Ana M. Korol, Bibiana Riquelme, Osvaldo A. Rosso
Abstract:
Since erythrocyte deformability analysis is mostly qualitative, the development of quantitative nonlinear methods is crucial for restricting subjectivity in the study of cell behaviour. An electro-optic mechanic system called erythrodeformeter has been developed and constructed in our laboratory in order to evaluate the erythrocytes' viscoelasticity. A numerical method formulated on the basis of fractal approximation for ordinary (OBM) and fractionary Brownian motion (FBM), as well as wavelet transform analysis, are proposed to distinguish chaos from noise based on the assumption that diffractometric data involves both deterministic and stochastic components, so it could be modelled as a system of bounded correlated random walk. Here we report studies on 25 donors: 4 alpha thalassaemic patients, 11 beta thalassaemic patients, and 10 healthy controls non-alcoholic and non-smoker individuals. The Correlation Coefficient, a nonlinear parameter, showed evidence of the changes in the erythrocyte deformability; the Wavelet Entropy could quantify those differences which are detected by the light diffraction patterns. Such quantifiers allow a good deal of promise and the possibility of a better understanding of the rheological erythrocytes aspects and also could help in clinical diagnosis.Keywords: red blood cells, deformability, nonlinear dynamics, chaos theory, wavelet trannsform
Procedia PDF Downloads 591175 Psychological Resilience Factors Associated with Climate Change Adaptations by Subsistence Farmers in a Rural Community, South Africa
Authors: Kgopa Bontle, Tholen Sodi
Abstract:
Climate change poses a major threat to the well-being of both people and the environment, with subsistence farmers most affected as they rely on local supply systems that are sensitive to climate variation. This study documented psychological resilience factors associated with climate change adaptations by subsistence farmers in Maruleng Municipality, Limpopo Province. A qualitative study was conducted to examine the notions of climate change by subsistence farmers, the psychological resilience factors, the strategies to cope with climate change, adaptation methods, and the development of subsistence farmers’ psychological resilience factors model. Data were collected through direct interactions with participants using a grounded theory research design. An open-ended interview was used to collect data with a sample of 15 participants selected through theoretical sampling in Maruleng Municipality. The participants were both Sepedi and Xitsonga speaking from 2 villages, mostly unemployed, pensioners and dependent on social grants. The study included both males and females who were predominately the elderly. The research findings indicate that farmers have limited knowledge of what climate change is and what causes it. Furthermore, the research reflects that although their responses were non-scientific but sensible enough to know what they were dealing with. They mentioned extreme weather, which includes hot days and less rainfall and changes in seasons, as some of the impacts brought by climate change. The results also indicated that participants have learned to adapt through several adaptation strategies, including mulching, changes in irrigation time slots and being innovative. The resilience factors that emerged from the study were a passion for farming, hope, enthusiasm, courage, acceptance/tolerance, livelihood and belief systems. Looking at the socio-economic factors of the current study setting argumentation leads to the conclusion that it is important that government should assist the subsistence farmers as it was observed from the participants that they felt neglected by the government and policymakers as they are small scale farmers and are not included like commercial farmers.Keywords: climate change, psychological resilience factors, human adaptation, subsistence farmers
Procedia PDF Downloads 1211174 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1031173 Sustainable Development of Adsorption Solar Cooling Machine
Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system
Procedia PDF Downloads 741172 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 701171 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 11