Search results for: multiple distribution supply chain network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16191

Search results for: multiple distribution supply chain network

14571 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 141
14570 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters

Authors: G. Krishna Mohana Rao, P. Ravi Kumar

Abstract:

Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.

Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers

Procedia PDF Downloads 524
14569 Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing

Authors: Norazlin Mohamad, Saiful Adli Bukry, Zarina Zahari, Haidzir Manaf, Hanafi Sawalludin

Abstract:

Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing.

Keywords: ankle instability, kinematic, muscle activation, force distribution, Rigid Tape, KT tape

Procedia PDF Downloads 418
14568 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.

Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints

Procedia PDF Downloads 581
14567 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 82
14566 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach

Authors: Ravi Patel, Krishna K. Krishnan

Abstract:

In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.

Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS

Procedia PDF Downloads 170
14565 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Zineb Nougrara

Abstract:

In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: satellite image, road network, nodes, image analysis and processing

Procedia PDF Downloads 274
14564 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers

Authors: Nivedha Rajaram

Abstract:

Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.

Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph

Procedia PDF Downloads 127
14563 Metaheuristic to Align Multiple Sequences

Authors: Lamiche Chaabane

Abstract:

In this study, a new method for solving sequence alignment problem is proposed, which is named ITS (Improved Tabu Search). This algorithm is based on the classical Tabu Search (TS). ITS is implemented in order to obtain results of multiple sequence alignment. Several ideas concerning neighbourhood generation, move selection mechanisms and intensification/diversification strategies for our proposed ITS is investigated. ITS have generated high-quality results in terms of measure of scores in comparison with the classical TS and simple iterative search algorithm.

Keywords: multiple sequence alignment, tabu search, improved tabu search, neighbourhood generation, selection mechanisms

Procedia PDF Downloads 305
14562 Modelling and Simulation of Bioethanol Production from Food Waste Using CHEMCAD Software

Authors: Kgomotso Matobole, Noluzuko Monakali, Hilary Rutto, Tumisang Seodigeng

Abstract:

On a global scale, there is an alarming generation of food waste. Food waste is generated across the food supply chain. Worldwide urbanization, as well as global economic growth, have contributed to this amount of food waste the environment is receiving. Food waste normally ends on illegal dumping sites when not properly disposed, or disposed to landfills. This results in environmental pollution due to inadequate waste management practices. Food waste is rich in organic matter and highly biodegradable; hence, it can be utilized for the production of bioethanol, a type of biofuel. In so doing, alternative energy will be created, and the volumes of food waste will be reduced in the process. This results in food waste being seen as a precious commodity in energy generation instead of a pollutant. The main aim of the project was to simulate a biorefinery, using a software called CHEMCAD 7.12. The resulting purity of the ethanol from the simulation was 98.9%, with the feed ratio of 1: 2 for food waste and water. This was achieved by integrating necessary unit operations and optimisation of their operating conditions.

Keywords: fermentation, bioethanol, food waste, hydrolysis, simulation, modelling

Procedia PDF Downloads 376
14561 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 160
14560 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 524
14559 Distribution and Taxonomy of Marine Fungi in Nha Trang Bay and Van Phong Bay, Vietnam

Authors: Thu Thuy Pham, Thi Chau Loan Tran, Van Duy Nguyen

Abstract:

Marine fungi play an important role in the marine ecosystems. Marine fungi also supply biomass and metabolic products of industrial value. Currently, the biodiversity of marine fungi along the coastal areas of Vietnam has not yet been studied fully. The objective of this study is to assess the spatial and temporal diversity of planktonic fungi from the coastal waters of Nha Trang Bay and Van Phong Bay in Central Vietnam using culture-dependent and independent approach. Using culture-dependent approach, filamentous fungi and yeasts were isolated on selective media and then classified by phenotype and genotype based on the sequencing of ITS (internal transcribed spacers) regions of rDNA with two primer pairs (ITS1F_KYO2 and ITS4; NS1 and NS8). Using culture-independent approach, environmental DNA samples were isolated and amplified using fungal-specific ITS primer pairs. A total of over 160 strains were isolated from 10 seawater sampling stations at 50 cm depth. They were classified into diverse genera and species of both yeast and mold. At least 5 strains could be potentially novel species. Our results also revealed that planktonic fungi were molecularly diverse with hundreds of phylotypes recovered across these two bays. The results of the study provide data about the distribution and taxonomy of mycoplankton in this area, thereby allowing assessment of their positive role in the biogeochemical cycle of coastal ecosystems and the development of new bioactive compounds for industrial applications.

Keywords: biodiversity, ITS, marine fungi, Nha Trang Bay, Van Phong Bay

Procedia PDF Downloads 190
14558 Combined Power Supply at Well Drilling in Extreme Climate Conditions

Authors: V. Morenov, E. Leusheva

Abstract:

Power supplying of well drilling on oil and gas fields at ambient air low temperatures is characterized by increased requirements of electric and heat energy. Power costs for heating of production facilities, technological and living objects may several times exceed drilling equipment electric power consumption. Power supplying of prospecting and exploitation drilling objects is usually done by means of local electric power structures based on diesel power stations. In the meantime, exploitation of oil fields is accompanied by vast quantities of extracted associated petroleum gas, and while developing gas fields there are considerable amounts of natural gas and gas condensate. In this regard implementation of gas-powered self-sufficient power units functioning on produced crude products for power supplying is seen as most potential. For these purposes gas turbines (GT) or gas reciprocating engines (GRE) may be used. In addition gas-powered units are most efficiently used in cogeneration mode - combined heat and power production. Conducted research revealed that GT generate more heat than GRE while producing electricity. One of the latest GT design are microturbines (MT) - devices that may be efficiently exploited in combined heat and power mode. In conditions of ambient air low temperatures and high velocity wind sufficient heat supplying is required for both technological process, specifically for drilling mud heating, and for maintaining comfortable working conditions at the rig. One of the main heat regime parameters are the heat losses. Due to structural peculiarities of the rig most of the heat losses occur at cold air infiltration through the technological apertures and hatchways and heat transition of isolation constructions. Also significant amount of heat is required for working temperature sustaining of the drilling mud. Violation of circulation thermal regime may lead to ice build-up on well surfaces and ice blockages in armature elements. That is why it is important to ensure heating of the drilling mud chamber according to ambient air temperature. Needed heat power will be defined by heat losses of the chamber. Noting heat power required for drilling structure functioning, it is possible to create combined heat and power complex based on MT for satisfying consumer power needs and at the same time lowering power generation costs. As a result, combined power supplying scheme for multiple well drilling utilizing heat of MT flue gases was developed.

Keywords: combined heat, combined power, drilling, electric supply, gas-powered units, heat supply

Procedia PDF Downloads 577
14557 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li

Abstract:

The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting

Procedia PDF Downloads 321
14556 Framework for Incorporating Environmental Performance in Network-Level Pavement Maintenance Program

Authors: Jessica Achebe, Susan Tighe

Abstract:

The reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to an optimal allocation of resources and reduced road user cost. This is the essence of incorporating environmental sustainability into pavement management. The functionality of performance measurement approach has made it one of the most valuable tool to Pavement Management Systems (PMSs) to account for different criteria in the decision-making process. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this paper present the first step, the intention is to review the previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for network-level sustainable maintenance and rehabilitation programming.

Keywords: pavement management, environment sustainability, network-level evaluation, performance measures

Procedia PDF Downloads 306
14555 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly

Authors: Agnieszka Markowska-Radomska, Ewa Dluska

Abstract:

Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.

Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion

Procedia PDF Downloads 198
14554 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 323
14553 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
14552 Industrial Rock Characterization using Nuclear Magnetic Resonance (NMR): A Case Study of Ewekoro Quarry

Authors: Olawale Babatunde Olatinsu, Deborah Oluwaseun Olorode

Abstract:

Industrial rocks were collected from a quarry site at Ewekoro in south-western Nigeria and analysed using Nuclear Magnetic Resonance (NMR) technique. NMR measurement was conducted on the samples in partial water-saturated and full brine-saturated conditions. Raw NMR data were analysed with the aid of T2 curves and T2 spectra generated by inversion of raw NMR data using conventional regularized least-squares inversion routine. Results show that NMR transverse relaxation (T2) signatures fairly adequately distinguish between the rock types. Similar T2 curve trend and rates at partial saturation suggests that the relaxation is mainly due to adsorption of water on micropores of similar sizes while T2 curves at full saturation depict relaxation decay rate as: 1/T2(shale)>1/ T2(glauconite)>1/ T2(limestone) and 1/T2(sandstone). NMR T2 distributions at full brine-saturation show: unimodal distribution in shale; bimodal distribution in sandstone and glauconite; and trimodal distribution in limestone. Full saturation T2 distributions revealed the presence of well-developed and more abundant micropores in all the samples with T2 in the range, 402-504 μs. Mesopores with amplitudes much lower than those of micropores are present in limestone, sandstone and glauconite with T2 range: 8.45-26.10 ms, 6.02-10.55 ms, and 9.45-13.26 ms respectively. Very low amplitude macropores of T2 values, 90.26-312.16 ms, are only recognizable in limestone samples. Samples with multiple peaks showed well-connected pore systems with sandstone having the highest degree of connectivity. The difference in T2 curves and distributions for the rocks at full saturation can be utilised as a potent diagnostic tool for discrimination of these rock types found at Ewekoro.

Keywords: Ewekoro, NMR techniques, industrial rocks, characterization, relaxation

Procedia PDF Downloads 297
14551 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence

Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti

Abstract:

In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.

Keywords: collective intelligence, data framework, destination management, smart tourism

Procedia PDF Downloads 121
14550 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study

Authors: Omojokun G. Aju, Adedayo O. Sule

Abstract:

ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.

Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee

Procedia PDF Downloads 383
14549 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 117
14548 The Risk and Prevention of Peer-To-Peer Network Lending in China

Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang

Abstract:

How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.

Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision

Procedia PDF Downloads 166
14547 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network

Authors: Katsumi Hirata

Abstract:

Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.

Keywords: environmental sound, bispectrum, spectrogram, slice bispectrogram, convolutional neural network

Procedia PDF Downloads 126
14546 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications

Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.

Keywords: cellular communications, multiple-input/multiple-output systems, mobile-phone antenna, polarization diversity

Procedia PDF Downloads 142
14545 Communication through Offline and Online Social Network of Thai Football Premier League Supporters

Authors: Krisana Chueachainat

Abstract:

The study is about the identity, typology and symbol using in communication through offline and online social network of each Thai football Premier League supporters. Also, study is about the factors that affected the sport to become the growing business and the communication factors that play the important role in the growth of the sport business. The Thai Premier League communicated with supporters in order to show the identity of each supporter and club in different ways. The expression of the identity was shown through online social network and offline told other people who they were. The study also about the factor that impacted the roles and communication factors that make football become the growing business. The factor that impact to the growth of football to the business, if clubs can action, the sport business would be to higher level and also push Thailand’s football to be effective and equal to other countries.

Keywords: online social network, offline social network, Thai football, supporters

Procedia PDF Downloads 299
14544 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature

Authors: M. Malekian, M. E. Heydari, M. Irani Estyar

Abstract:

Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.

Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction

Procedia PDF Downloads 131
14543 Sharing Experience in Authentic Learning for Mobile Security

Authors: Kai Qian, Lixin Tao

Abstract:

Mobile devices such as smartphones are getting more and more popular in our daily lives. The security vulnerability and threat attacks become a very emerging and important research and education topic in computing security discipline. There is a need to have an innovative mobile security hands-on laboratory to provide students with real world relevant mobile threat analysis and protection experience. This paper presents an authentic teaching and learning mobile security approach with smartphone devices which covers most important mobile threats in most aspects of mobile security. Each lab focuses on one type of mobile threats, such as mobile messaging threat, and conveys the threat analysis and protection in multiple ways, including lectures and tutorials, multimedia or app-based demonstration for threats analysis, and mobile app development for threat protections. This authentic learning approach is affordable and easily-adoptable which immerse students in a real world relevant learning environment with real devices. This approach can also be applied to many other mobile related courses such as mobile Java programming, database, network, and any security relevant courses so that can learn concepts and principles better with the hands-on authentic learning experience.

Keywords: mobile computing, Android, network, security, labware

Procedia PDF Downloads 406
14542 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution

Authors: Md. Rashidul Hasan, Atikur Rahman Baizid

Abstract:

The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.

Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function

Procedia PDF Downloads 384