Search results for: Maximum Entropy Bootstrapping approach
16271 Bi-Criteria Vehicle Routing Problem for Possibility Environment
Authors: Bezhan Ghvaberidze
Abstract:
A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory
Procedia PDF Downloads 48516270 An Analytical Approach for Medication Protocol Errors from Pediatric Nurse Curriculum
Authors: Priyanka Jani
Abstract:
The main focus of this research is to consider the objective of nursing curriculum in concern with pediatric nurses in respect to various parameters such as causes, reporting and prevention of medication protocol errors. A design or method selected for the study is the descriptive and cross sectional with respect to analytical study. Nurses were selected from inpatient pediatric wards of 5 hospitals in Gujarat, as a population. 126 pediatric nurses gave approval to participate in the research and completed with quarter questionnaires. The actual data was collected and analyzed. The actual data was collected and analyzed. The medium age of the nurses was 25.7 ± 3.68 years; the maximum was lady (97.6%) pediatric nurses stated that the most common causes of medication protocol errors were large work time (69.2%) and a huge ratio of patient: nurse (59.9%). Even though the highest number of nurses (89%) made use of a medication protocol errors notification system, or else they use to check it before. Many errors were not reported and nurses cited abeyant claims of nurses in case of adverse and opposite output for patient (53.97%), distrust (52.45%), and fear of various/different protocol for mediations (42%) among the causes of insufficient of notification in concern to ignorance, nurses most commonly noted the requirement for efficient data concerning the safe use of medications (47.5%). This is the frequent study made by researcher in Gujarat about the pediatric nurse curriculum regarding medication protocol errors. The outputs debate that there is a requirement for ongoing coaching of pediatric nurses regarding safe & secure medication observation and that the causes and post reporting of medication protocol errors by hand further survey.Keywords: pediatric, medication, protocol, errors
Procedia PDF Downloads 29216269 Green Initiative and Marketing Approach: Developing a Better Marketing Approach of Green Initiatives by an Apparel Brand
Authors: Vaishali Joshi, Pallav Joshi
Abstract:
Environment concern has become an important topic and continues to acquire more popularity in the coming scenario. We all are exposed to messages daily, which encourage us to involve in green behavior. Factors such as Global Warming, Climate change are creating a big buzz amongst the people. Realizing this, many firms/companies are adopting the bright way of making profit along with creating a brand image, by going green. These firms/companies persuade consumers to use purchase eco-friendly products for the benefit of the environment and the society. In such scenario, it becomes very essential for such firms/companies to approach the customers in a better way. In other words, we can say that marketing approach plays a crucial role for such firm/companies. Hence in this research study, we have tried to create a marketing approach for the firms/companies for selling the eco-friendly apparels. We have studied the hypothetical apparel brand who has taken a green initiative of making their products eco-friendly. We have named this hypothetical brand as “Go-Green”. By taking this hypothetical brand we have studied about how this brand can achieve better marketing approach. In particular, we have studied the four types of print advertisements of this brand as follows :(i) print advertisement showing only eco-friendly apparel (ii) print advertisement showing eco-friendly apparel labeled with eco-label (iii) print advertisement showing eco-friendly apparel along with information about the benefit of the featured apparel and (iv) print advertisement showing eco-friendly apparel with both eco-label and information about the benefit of the featured apparel. The conclusion of this research suggest that respondents more positively evaluate the print advertisement of eco-friendly apparel labeled with eco-labels and information about the benefit of the featured apparel, compared by other three print advertisement. Moreover, in this research study, we have studied environment knowledge, as the moderating factor affecting the consumer green purchase behavior.Keywords: eco-friendly apparel, print advertisement, eco-label, environment knowledge
Procedia PDF Downloads 28616268 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor
Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie
Abstract:
Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization
Procedia PDF Downloads 2116267 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃
Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev
Abstract:
Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction
Procedia PDF Downloads 26316266 West Nile Virus Outbreaks in Canada under Expected Climate Conditions
Authors: Jalila Jbilou, Salaheddine El Adlouni, Pierre Gosselin
Abstract:
Background: West Nile virus is increasingly an important public health issue in North America. In Canada, WVN was officially reported in Toronto and Montréal for the first time in 2001. During the last decade, several WNV events have been reported in several Canadian provinces. The main objective of the present study is to update the frequency of the climate conditions favorable to WNV outbreaks in Canada. Method: Statistical frequency analysis has been used to estimate the return period for climate conditions associated with WNV outbreaks for the 1961–2050 period. The best fit is selected through the Akaike Information Criterion, and the parameters are estimated using the maximum likelihood approach. Results: Results show that the climate conditions related to the 2002 event, for Montreal and Toronto, are becoming more frequent. For Saskatoon, the highest DD20 events recorded for the last few decades were observed in 2003 and 2007. The estimated return periods are 30 years and 70 years, respectively. Conclusion: The emergence of WNV was related to extremely high DD values in the summer. However, some exceptions may be related to several factors such as virus persistence, vector migration, and also improved diagnosis and reporting levels. It is clear that such climate conditions have become much more common in the last decade and will likely continue to do so over future decades.Keywords: West Nile virus, climate, North America, statistical frequency analysis, risk estimation, public health, modeling, scenario, temperature, precipitation
Procedia PDF Downloads 34616265 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach
Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch
Abstract:
This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes
Procedia PDF Downloads 5116264 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems
Authors: Akshay S. Dalvi, Hazim El-Mounayri
Abstract:
The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.Keywords: district cooling plant, energy systems, framework, MBSE
Procedia PDF Downloads 13016263 Generating Ideas to Improve Road Intersections Using Design with Intent Approach
Authors: Omar Faruqe Hamim, M. Shamsul Hoque, Rich C. McIlroy, Katherine L. Plant, Neville A. Stanton
Abstract:
Road safety has become an alarming issue, especially in low-middle income developing countries. The traditional approaches lack the out of the box thinking, making engineers confined to applying usual techniques in making roads safer. A socio-technical approach has recently been introduced in improving road intersections through designing with intent. This Design With Intent (DWI) approach aims to give practitioners a more nuanced approach to design and behavior, working with people, people’s understanding, and the complexities of everyday human experience. It's a collection of design patterns —and a design and research approach— for exploring the interactions between design and people’s behavior across products, services, and environments, both digital and physical. Through this approach, it can be seen that how designing with people in behavior change can be applied to social and environmental problems, as well as commercially. It has a total of 101 cards across eight different lenses, such as architectural, error-proofing, interaction, ludic, perceptual, cognitive, Machiavellian, and security lens each having its own distinct characteristics of extracting ideas from the participant of this approach. For this research purpose, a three-legged accident blackspot intersection of a national highway has been chosen to perform the DWI workshop. Participants from varying fields such as civil engineering, naval architecture and marine engineering, urban and regional planning, and sociology actively participated for a day long workshop. While going through the workshops, the participants were given a preamble of the accident scenario and a brief overview of DWI approach. Design cards of varying lenses were distributed among 10 participants and given an hour and a half for brainstorming and generating ideas to improve the safety of the selected intersection. After the brainstorming session, the participants spontaneously went through roundtable discussions regarding the ideas they have come up with. According to consensus of the forum, ideas were accepted or rejected. These generated ideas were then synthesized and agglomerated to bring about an improvement scheme for the intersection selected in our study. To summarize the improvement ideas from DWI approach, color coding of traffic lanes for separate vehicles, channelizing the existing bare intersection, providing advance warning traffic signs, cautionary signs and educational signs motivating road users to drive safe, using textured surfaces at approach with rumble strips before the approach of intersection were the most significant one. The motive of this approach is to bring about new ideas from the road users and not just depend on traditional schemes to increase the efficiency, safety of roads as well and to ensure the compliance of road users since these features are being generated from the minds of users themselves.Keywords: design with intent, road safety, human experience, behavior
Procedia PDF Downloads 13916262 Modeling the Compound Interest Dynamics Using Fractional Differential Equations
Authors: Muath Awadalla, Maen Awadallah
Abstract:
Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization
Procedia PDF Downloads 12616261 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46516260 Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading
Authors: Robel Wondimu Alemayehu, Sihwa Jung, Manwoo Park, Young K. Ju
Abstract:
Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.Keywords: connections, finite element analysis, seismic design, steel intermediate moment frame
Procedia PDF Downloads 16616259 Increasing Sustainability of Melanin Bio-Production Using Seawater
Authors: Harsha Thaira, Ritu Raval, Keyur Raval
Abstract:
Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.Keywords: melanin, marine, bioprocess, pseudomonas
Procedia PDF Downloads 27716258 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 28516257 Employing a System of Systems Approach in the Maritime RobotX Challenge: Incorporating Information Technology Students in the Development of an Autonomous Catamaran
Authors: Adam Jenkins
Abstract:
The Maritime RobotX Challenge provides a platform for postgraduate students conducting research in autonomous robotic systems to participate in an international competition. Although targeted to postgraduate students, the problem domain lends itself to a wide range of different levels of student expertise. In 2022, undergraduate Information Technology students from the University of South Australia undertook the challenge, utilizing a System of the Systems approach to the project's architecture. Each student group produced an independent solution to an identified task, which was then implemented on a Single Board Computer (SBC). A Central Control System then engaged each solution when appropriate, allowing the encapsulated SBC systems to manage each task as it was encountered. This approach facilitated collaboration among the multiple independent student teams over an 18-month period, and the fundamental system-agnostic architecture allowed for both the variance in student solutions and the limitations caused by the global electronics shortage. By adopting this approach, Information Technology teams were able to work independently yet produce an effective solution, leveraging their expertise to develop and construct an autonomous catamaran capable of meeting the competition's demanding requirements while producing a high level of engagement. The System of Systems approach is recommended to other universities interested in competing at this level and engaging students in a real-world problem.Keywords: case study, robotics, education, programming, system of systems, multi-disciplinary collaboration
Procedia PDF Downloads 7616256 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines
Authors: P. Byrnes, F. A. DiazDelaO
Abstract:
The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines
Procedia PDF Downloads 22116255 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 9516254 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea
Authors: Paul Buchana, Patrick E. Mc Sharry
Abstract:
In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis
Procedia PDF Downloads 29916253 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese
Authors: Lila Boulekbache-Makhlouf, Fatiha Brahmi
Abstract:
This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols using ultrasound are optimized. Then, the contents of total polyphenols PPT , flavonoids and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physicochemical, microbiological and sensory analyzes of the cheese produced. The maximum total polyphenols value of 70.44 mg GAE gallic acid equivalent / g of dry matter DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min and a temperature of 10 °C. While, the maximum TPP total polyphenols content of potato peels of 45.03 ± 4.16 mg gallic acid equivalent / g of dry matter DM was obtained using an ethanol /water mixture (40%, v/v), a time of 30 min and a temperature of 60 °C and the flavonoid contents were 13.99 and 7.52 QE quercetin equivalent/g dry matter DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with the concentration of extracts causing a 50% inhibition IC50s of 125.42 ± 2.78 μg/mL for 2,2-diphényl 1-picrylhydrazyle DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physicochemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analysis, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.Keywords: shallots leaves, potato peels, ultrasound extraction, phenolics, cheese
Procedia PDF Downloads 9116252 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture
Authors: Sajjad Akbar, Rabia Bashir
Abstract:
With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.Keywords: agent based web content mining, content centric networking, information centric networking
Procedia PDF Downloads 47516251 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 15616250 Thermal Management of Ground Heat Exchangers Applied in High Power LED
Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen
Abstract:
The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation
Procedia PDF Downloads 57916249 Object Oriented Fault Tree Analysis Methodology
Abstract:
Traditional safety, risk and reliability analysis approaches are problem-oriented, which make it great workload when analyzing complicated and huge system, besides, too much repetitive work would to do if the analyzed system composed by many similar components. It is pressing need an object and function oriented approach to maintain high consistency with problem domain. A new approach is proposed to overcome these shortcomings of traditional approaches, the concepts: class, abstract, inheritance, polymorphism and encapsulation are introduced into FTA and establish the professional class library that the abstractions of physical objects in real word, four areas relevant information also be proposed as the establish help guide. The interaction between classes is completed by the inside or external methods that mapping the attributes to base events through fully search the knowledge base, which forms good encapsulation. The object oriented fault tree analysis system that analyze and evaluate the system safety and reliability according to the original appearance of the problem is set up, where could mapped directly from the class and object to the problem domain of the fault tree analysis. All the system failure situations can be analyzed through this bottom-up fault tree construction approach. Under this approach architecture, FTA approach is developed, which avoids the human influence of the analyst on analysis results. It reveals the inherent safety problems of analyzed system itself and provides a new way of thinking and development for safety analysis. So that object oriented technology in the field of safety applications and development, safety theory is conducive to innovation.Keywords: FTA, knowledge base, object-oriented technology, reliability analysis
Procedia PDF Downloads 24816248 Cost-Effective, Accuracy Preserving Scalar Characterization for mmWave Transceivers
Authors: Mohammad Salah Abdullatif, Salam Hajjar, Paul Khanna
Abstract:
The development of instrument grade mmWave transceivers comes with many challenges. A general rule of thumb is that the performance of the instrument must be higher than the performance of the unit under test in terms of accuracy and stability. The calibration and characterizing of mmWave transceivers are important pillars for testing commercial products. Using a Vector Network Analyzer (VNA) with a mixer option has proven a high performance as an approach to calibrate mmWave transceivers. However, this approach comes with a high cost. In this work, a reduced-cost method to calibrate mmWave transceivers is proposed. A comparison between the proposed method and the VNA technology is provided. A demonstration of significant challenges is discussed, and an approach to meet the requirements is proposed.Keywords: mmWave transceiver, scalar characterization, coupler connection, magic tee connection, calibration, VNA, vector network analyzer
Procedia PDF Downloads 10716247 Worm Gearing Design Improvement by Considering Varying Mesh Stiffness
Authors: A. H. Elkholy, A. H. Falah
Abstract:
A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line
Procedia PDF Downloads 34516246 Educational Equity in Online Art Education: The Reggio Emilia Approach in White Ant Atelier for Persian-Speaking Children
Authors: Mahsa Mohammadhosseini
Abstract:
This study investigates the effectiveness of adapting the Reggio Emilia approach to online art education, specifically through White Ant Atelier (W.A.A), a virtual art initiative for Persian-speaking children. Employing an action research framework, the study examines the implementation of Reggio Emilia principles via the "Home" art project, which spanned four months and included 16 sessions. The analysis covers 50 artworks produced by participants, including 17 pieces created collaboratively by mothers and their children. The results demonstrate that integrating the Reggio Emilia approach into online platforms significantly improves children's creative expression and engagement. This finding illustrates that virtual education when integrated with child-centered methodologies like Reggio Emilia, can effectively address and reduce educational inequities among Persian-speaking children.Keywords: Reggio Emilia, online education, art education, educational equity
Procedia PDF Downloads 1816245 A Practice Model for Quality Improvement in Concrete Block Mini Plants Based on Merapi Volcanic Sand
Authors: Setya Winarno
Abstract:
Due to abundant Merapi volcanic sand in Yogyakarta City, many local people have utilized it for mass production of concrete blocks through mini plants although their products are low in quality. This paper presents a practice model for quality improvement in this situation in order to supply the current customer interest in good quality of construction material. The method of this research was to investigate a techno economic evaluation through laboratory test and interview. Samples of twenty existing concrete blocks made by local people had only 19.4 kg/cm2 in average compression strength which was lower than the minimum Indonesian standard of 25 kg/cm2. Through repeat testing in laboratory for fulfilling the standard, the concrete mix design of water cement ratio should not be more than 0.64 by weight basis. The proportion of sand as aggregate content should not be more than 9 parts to 1 part by volume of Portland cement. Considering the production cost, the basic price was Rp 1,820 for each concrete block, comparing to Rp 2,000 as a normal competitive market price. At last, the model describes (a) maximum water cement ratio is 0.64, (b) maximum proportion of sand and cement is 1:9, (c) the basic price is about Rp. 1,820.00 and (d) strategies to win the competitive market on mass production of concrete blocks are focus in quality, building relationships with consumer, rapid respond to customer need, continuous innovation by product diversification, promotion in social media, and strict financial management.Keywords: concrete block, good quality, improvement model, diversification
Procedia PDF Downloads 51516244 Cognitive Mechanisms of Mindfulness-Based Cognitive Therapy on Depressed Older Adults: The Mediating Role of Rumination and Autobiographical Memory Specificity
Authors: Wai Yan Shih, Sau Man Wong, Wing Chung Chang, Wai Chi Chan
Abstract:
Background: Late-life depression is associated with significant consequences. Although symptomatic reduction is achievable through pharmacological interventions, older adults are more vulnerable to the side effects than their younger counterparts. In addition, drugs do not address underlying cognitive dysfunctions such as rumination and reduced autobiographical memory specificity (AMS), both shown to be maladaptive coping styles that are associated with a poorer prognosis in depression. Considering how aging is accompanied by cognitive, psychological and physical changes, the interplay of these age-related factors may potentially aggravate and interfere with these depressive cognitive dysfunctions in late-life depression. Special care should, therefore, be drawn to ensure these cognitive dysfunctions are adequately addressed. Aim: This randomized controlled trial aims to examine the effect of mindfulness-based cognitive therapy (MBCT) on depressed older adults, and whether the potential benefits of MBCT are mediated by improvements in rumination and AMS. Method: Fifty-seven participants with an average age of 70 years old were recruited from multiple elderly centers and online mailing lists. Participants were assessed with: (1) Hamilton depression scale, (2) ruminative response scale, (3) autobiographical memory test, (4) mindful attention awareness scale, and (5) Montreal cognitive assessment. Eligible participants with mild to moderate depressive symptoms and normal cognitive functioning were randomly allocated to an 8-week MBCT group or active control group consisting of a low-intensity exercise program and health education. Post-intervention assessments were conducted after the 8-week program. Ethics approval was given by the Institutional Review Board of the University of Hong Kong/Hospital Authority. Results: Mixed-factorials ANOVAs demonstrated significant time x group interaction effects for depressive symptoms, AMS, and dispositional mindfulness. A marginally significant interaction effect was found for rumination. Simple effect analyses revealed a significant reduction in depressive symptoms for the both the MBCT group (mean difference = 7.1, p = .000), and control group (mean difference = 2.7, p = .023). However, only participants in the MBCT group demonstrated improvements in rumination, AMS, and dispositional mindfulness. Bootstrapping-based mediation analyses showed that the effect of MBCT in alleviating depressive symptoms was only mediated by the reduction in rumination. Conclusions: The findings support the use of MBCT as an effective intervention for depressed older adults, considering the improvements in depressive symptoms, rumination, AMS and dispositional mindfulness despite their age. Reduction in ruminative tendencies plays a major role in the cognitive mechanism of MBCT.Keywords: mindfulness-based cognitive therapy, depression, older adults, rumination, autobiographical memory specificity
Procedia PDF Downloads 21116243 Data-Driven Dynamic Overbooking Model for Tour Operators
Authors: Kannapha Amaruchkul
Abstract:
We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator
Procedia PDF Downloads 13416242 An Effective Approach to Knowledge Capture in Whole Life Costing in Constructions Project
Authors: Ndibarafinia Young Tobin, Simon Burnett
Abstract:
In spite of the benefits of implementing whole life costing technique as a valuable approach for comparing alternative building designs allowing operational cost benefits to be evaluated against any initial cost increases and also as part of procurement in the construction industry, its adoption has been relatively slow due to the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice, i.e. the lack of professionals in many establishments with knowledge and training on the use of whole life costing technique, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. This has proved to be very challenging to those who showed some willingness to employ the technique in a construction project. The knowledge generated from a project can be considered as best practices learned on how to carry out tasks in a more efficient way, or some negative lessons learned which have led to losses and slowed down the progress of the project and performance. Knowledge management in whole life costing practice can enhance whole life costing analysis execution in a construction project, as lessons learned from one project can be carried on to future projects, resulting in continuous improvement, providing knowledge that can be used in the operation and maintenance phases of an assets life span. Purpose: The purpose of this paper is to report an effective approach which can be utilised in capturing knowledge in whole life costing practice in a construction project. Design/methodology/approach: An extensive literature review was first conducted on the concept of knowledge management and whole life costing. This was followed by a semi-structured interview to explore the existing and good practice knowledge management in whole life costing practice in a construction project. The data gathered from the semi-structured interview was analyzed using content analysis and used to structure an effective knowledge capturing approach. Findings: From the results obtained in the study, it shows that the practice of project review is the common method used in the capturing of knowledge and should be undertaken in an organized and accurate manner, and results should be presented in the form of instructions or in a checklist format, forming short and precise insights. The approach developed advised that irrespective of how effective the approach to knowledge capture, the absence of an environment for sharing knowledge, would render the approach ineffective. Open culture and resources are critical for providing a knowledge sharing setting, and leadership has to sustain whole life costing knowledge capture, giving full support for its implementation. The knowledge capturing approach has been evaluated by practitioners who are experts in the area of whole life costing practice. The results have indicated that the approach to knowledge capture is suitable and efficient.Keywords: whole life costing, knowledge capture, project review, construction industry, knowledge management
Procedia PDF Downloads 260