Search results for: online learning higher-order learning attributes
8383 An Experiment with Science Popularization in Rural Schools of Sehore District in Madhya Pradesh, India
Authors: Peeyush Verma, Anil Kumar, Anju Rawlley, Chanchal Mehra
Abstract:
India's school-going population is largely served by an educational system that is, in most rural parts, stuck with methods that emphasize rote learning, endless examinations, and monotonous classroom activities. Rural government schools are generally seen as having poor infrastructure, poor support system and low motivation for teaching as well as learning. It was experienced during the survey of this project that there is lesser motivation of rural boys and girls to attend their schools and still less likely chances to study science, tabooed as “difficult”. An experiment was conducted with the help of Rural Knowledge Network Project through Department of Science and Technology, Govt of India in five remote villages of Sehore District in Madhya Pradesh (India) during 2012-2015. These schools are located about 50-70 Km away from Bhopal, the capital of Madhya Pradesh and can distinctively qualify as average rural schools. Three tier methodology was adapted to unfold the experiment. In first tier randomly selected boys and girls from these schools were taken to a daylong visit to the Regional Science Centre located in Bhopal. In second tier, randomly selected half of those who visited earlier were again taken to the Science Centre to make models of Science. And in third tier, all the boys and girls studying science were exposed to video lectures and study material through web. The results have shown an interesting face towards learning science among youths in rural schools through peer learning or incremental learning. The students who had little or no interest in learning science became good learners and queries started pouring in from the neighbourhood village as well as a few parents requested to take their wards in the project to learn science. The paper presented is a case study of the experiment conducted in five rural schools of Sehore District. It reflects upon the methodology of developing awareness and interest among students and finally engaging them in popularising science through peer-to-peer learning using incremental learning elements. The students, who had a poor perception about science initially, had changed their attitude towards learning science during the project period. The results of this case, however, cannot be generalised unless replicated in the same setting elsewhere.Keywords: popularisation of science, science temper, incremental learning, peer-to-peer learning
Procedia PDF Downloads 3138382 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana
Authors: Joshua Osondu
Abstract:
This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.Keywords: artificial intelligence, teacher, learner, students, policy response
Procedia PDF Downloads 898381 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 788380 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain
Authors: Amal M. Alrayes, Hayat M. Ali
Abstract:
Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.Keywords: Web 2.0, higher education, acceptance, students' perception
Procedia PDF Downloads 3368379 University Students' Perceptions of Effective Teaching
Authors: Christine K. Ormsbee, Jeremy S. Robinson
Abstract:
Teacher quality is important for United States universities. It impacts student achievement, program and degree progress, and even retention. While course instructors are still the primary designers and deliverers of instruction in U.S. higher education classrooms, students have become better and more vocal consumers of instruction. They are capable of identifying what instructors do that facilitates their learning or, conversely, what instructors do that makes learning more difficult. Instructors can use students as resources as they design and implement their courses. Students have become more aware of their own learning preferences and processes and can articulate those. While it is not necessarily possible or likely that an instructor can address the widely varying differences in learning preferences represented by a large class of students, it is possible for them to employ general instructional supports that help students understand clearly the instructor's study expectations, identify critical content, efficiently commit content to memory, and develop new skills. Those learning supports include reading guides, test study guides, and other instructor-developed tasks that organize learning for students, hold them accountable for the content, and prepare them to use that material in simulated and real situations. When U.S. university teaching and learning support staff work with instructors to help them identify areas of their teaching to improve, a key part of that assistance includes talking to the instructor member's students. Students are asked to explain what the instructor does that helps them learn, what the instructor does that impedes their learning, and what they wish the instructor would do. Not surprisingly, students are very specific in what they see as helpful learning supports for them. Moreover, they also identify impediments to their success, viewing those as the instructor creating unnecessary barriers to learning. A qualitative survey was developed to provide undergraduate students the opportunity to identify instructor behaviors and/or practices that they thought helped students learn and those behaviors and practices that were perceived as hindrances to student success. That information is used to help instructors implement more student-focused learning supports that facilitate student achievement. In this session, data shared from the survey will focus on supportive instructor behaviors identified by undergraduate students in an institution located in the southwest United States and those behaviors that students perceive as creating unnecessary barriers to their academic success.Keywords: effective teaching, pedagogy, student engagement, instructional design
Procedia PDF Downloads 858378 Learning outside the Box by Using Memory Techniques Skill: Case Study in Indonesia Memory Sports Council
Authors: Muhammad Fajar Suardi, Fathimatufzzahra, Dela Isnaini Sendra
Abstract:
Learning is an activity that has been used to do, especially for a student or academics. But a handful of people have not been using and maximizing their brains work and some also do not know a good brain work time in capturing the lessons, so that knowledge is absorbed is also less than the maximum. Indonesia Memory Sports Council (IMSC) is an institution which is engaged in the performance of the brain and the development of effective learning methods by using several techniques that can be used in considering the lessons and knowledge to grasp well, including: loci method, substitution method, and chain method. This study aims to determine the techniques and benefits of using the method given in learning and memorization by applying memory techniques taught by Indonesia Memory Sports Council (IMSC) to students and the difference if not using this method. This research uses quantitative research with survey method addressed to students of Indonesian Memory Sports Council (IMSC). The results of this study indicate that learn, understand and remember the lesson using the techniques of memory which is taught in Indonesia Memory Sport Council is very effective and faster to absorb the lesson than learning without using the techniques of memory, and this affects the academic achievement of students in each educational institution.Keywords: chain method, Indonesia memory sports council, loci method, substitution method
Procedia PDF Downloads 2888377 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement
Authors: Kimberley Kennedy
Abstract:
The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement
Procedia PDF Downloads 1198376 Language Development and Learning about Violence
Authors: Karen V. Lee
Abstract:
The background and significance of this study involves research about a music teacher discovering how language development and learning can help her overcome harmful and lasting consequences from sexual violence. Education about intervention resources from language development that helps her cope with consequences influencing her career as teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve available education from learning resources to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how language development and learning provide helpful resources to victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life. In conclusion, the research has a reflexive storied framework that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using language development and learning for intervention resources can provide transformative aspects that contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Language development and learning supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.Keywords: intervention, language development and learning, sexual violence, story
Procedia PDF Downloads 3308375 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 1158374 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2918373 In Online and Laboratory We Trust: Comparing Trust Game Behavior in Three Environments
Authors: Kaisa M. Herne, Hanna E. Björkstedt
Abstract:
Comparisons of online and laboratory environments are important for assessing whether the environment influences behavioral results. Trust game behavior was examined in three environments: 1) The standard laboratory setting with physically present participants (laboratory), 2) An online environment with an online meeting before playing the trust game (online plus a meeting); and 3) An online environment without a meeting (online without a meeting). In laboratory, participants were present in a classroom and played the trust game anonymously via computers. Online plus a meeting mimicked the laboratory in that participants could see each other in an online meeting before sessions started, whereas online without a meeting was a standard online experiment in which participants did not see each other at any stages of the experiment. Participants were recruited through pools of student subjects at two universities. The trust game was identical in all conditions; it was played with the same software, anonymously, and with stranger matching. There were no statistically significant differences between the treatment conditions regarding trust or trustworthiness. Results suggest that conducting trust game experiments online will yield similar results to experiments implemented in a laboratory.Keywords: laboratory vs. online experiment, trust behavior, trust game, trustworthiness behavior
Procedia PDF Downloads 768372 Instance Selection for MI-Support Vector Machines
Authors: Amy M. Kwon
Abstract:
Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning
Procedia PDF Downloads 338371 Instruct Students Effective Ways to Reach an Advanced Level after Graduation
Authors: Huynh Tan Hoi
Abstract:
Considered as one of the hardest languages in the world, Japanese is still the language that many young people choose to learn. Today, with the development of technology, learning foreign languages in general and Japanese language, in particular, is not an impossible barrier. Learning materials are not only from paper books, songs but also through software programs of smartphones or computers. Especially, students who begin to explore effective skills to study this language need to access modern technologies to improve their learning much better. When using the software, some students may feel embarrassed and challenged, but everything would go smoothly after a few days. After completing the course, students will get more knowledge, achieve a higher knowledge such as N2 or N1 Japanese Language Proficiency Test Certificate. In this research paper, 35 students who are studying at Ho Chi Minh City FPT University were asked to complete the questionnaire at the beginning of July up to August of 2018. Through this research, we realize that with the guidance of lecturers, the necessity of using modern software and some effective methods are indispensable in term of improving quality of teaching and learning process.Keywords: higher knowledge, Japanese, methods, software, students
Procedia PDF Downloads 2238370 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method
Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter
Abstract:
This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.Keywords: aging, eye tracking, implicit learning, visual statistical learning
Procedia PDF Downloads 758369 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco
Authors: Abdelghani Boudiaf
Abstract:
The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.Keywords: changing mentalities, continuing training, organizational learning, quality management system, skills development
Procedia PDF Downloads 1098368 A Learning Effects Research Applied a Mobile Guide System with Augmented Reality for Education Center
Authors: Y. L. Chang, Y. H. Huang
Abstract:
This study designed a mobile guide system that integrates the design principles of guidance and interpretation with augmented reality (AR) as an auxiliary tool for National Taiwan Science Education Center guidance and explored the learning performance of participants who were divided into two visiting groups: AR-guided mode and non-guided mode (without carrying any auxiliary devices). The study included 96 college students as participants and employed a quasi-experimental research design. This study evaluated the learning performance of education center students aided with different guided modes, including their flow experience, activity involvement, learning effects, as well as their attitude and acceptance of using the guide systems. The results showed that (a) the AR guide promoted visitors’ flow experience; (b) the AR-guidance activity involvement and flow experience having a significant positive effect; (c) most of the visitors of mobile guide system with AR elicited a positive response and acceptance attitude. These results confirm the necessity of human–computer–context interaction. Future research can continue exploring the advantages of enhanced learning effectiveness, activity involvement, and flow experience through application of the results of this study.Keywords: augmented reality, mobile guide system, informal learning, flow experience, activity involvement
Procedia PDF Downloads 2298367 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 318366 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 2638365 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1528364 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 1388363 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School
Authors: Diriba Gemechu, Lamessa Abebe
Abstract:
The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.Keywords: academic achievement, comparison group, cooperative learning, experimental group
Procedia PDF Downloads 2458362 Virtual Player for Learning by Observation to Assist Karate Training
Authors: Kazumoto Tanaka
Abstract:
It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player
Procedia PDF Downloads 2748361 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing
Procedia PDF Downloads 1748360 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 788359 Project Management at University: Towards an Evaluation Process around Cooperative Learning
Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R
Abstract:
The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training
Procedia PDF Downloads 1678358 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning
Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj
Abstract:
Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net
Procedia PDF Downloads 1538357 Living or Surviving in an Intercultural Context: A Study on Transformative Learning of UK Students in China and Chinese Students in the UK
Authors: Yiran Wang
Abstract:
As international education continues to expand countries providing such opportunities not only benefit but also face challenges. For traditional destinations, including the United States and the United Kingdom, the number of international students has been falling. At the same time emerging economies, such as China, are witnessing a rapid increase in the number of international students enrolled in their universities. China is, therefore, beginning to play an important role in the competitive global market for higher education. This study analyses and compares the experiences of international students in the UK and China using Transformative Learning theory. While there is an extensive literature on both international higher education and also Transformative Learning theory there are currently three contributions this study makes. First, this research applies the theory to two international student groups: UK students in Chinese universities and Chinese students in UK universities.Second, this study includes a focus on the intercultural learning of Chinese doctoral students in the UK filling a gap in current research. Finally, this investigation has extended the very limited number of current research projects on UK students in China. It is generally acknowledged that international students will experience various challenges when they are in a culturally different context. Little research has focused on how, why, and why not learners are transformed through exposure to their new environment. This study applies Transformative Learning theory to address two research questions: first, do UK international students in Chinese universities and Chinese international students in UK universities experience transformational learning in/during their overseas studies? Second, what factors foster or impede international students’ experience of transformative learning? To answer the above questions, semi-structured interviews were used to investigate international students’ academic and social experiences. Based on the insights provided by Mezirow,Taylor,and previous studies on international students, this study argues that international students’ intercultural experience is a complex process.Transformation can occur in various ways and social and personal perspectives underpin the transformative learning of the students studied. Contributing factors include culture shock, educational conventions,the student’s motivation, expectations, personality, gender and previous work experience.The results reflect the significance of differences in teaching styles in the UK and China and the impact this can have on the student teaching and learning process when they move to a new university.Keywords: intercultural learning, international higher education, transformative learning, UK and Chinese international students
Procedia PDF Downloads 4108356 Engaging Girls in 'Learn Science by Doing' as Strategy for Enhanced Learning Outcome at the Junior High School Level in Nigeria
Authors: Stella Y. Erinosho
Abstract:
In an attempt to impact on girls’ interest in science, an instructional package on ‘Learn Science by Doing (LSD)’ was developed to support science teachers in teaching integrated science at the junior secondary level in Nigeria. LSD provides an instructional framework aimed at actively engaging girls in beginners’ science through activities that are discovery-oriented and allow for experiential learning. The goal of this study was to show the impact of application of LSD on girls’ performance and interest in science. The major hypothesis that was tested in the study was that students would exhibit higher learning outcomes (achievement and attitude) in science as effect of exposure to LSD instructional package. A quasi-experimental design was adopted, incorporating four all-girls schools. Three of the schools (comprising six classes) were randomly designated as experimental and one as the control. The sample comprised 357 girls (275 experimental and 82 control) and nine science teachers drawn from the experimental schools. The questionnaire was designed to gather data on students’ background characteristics and their attitude toward science while the cognitive outcomes were measured using tests, both within a group and between groups, the girls who had exposure to LSD exhibited improved cognitive outcomes and more positive attitude towards science compared with those who had conventional teaching. The data are consistent with previous studies indicating that interactive learning activities increase student performance and interest.Keywords: active learning, school science, teaching and learning, Nigeria
Procedia PDF Downloads 3848355 Teaching, Learning and Evaluation Enhancement of Information Communication Technology Education in Schools through Pedagogical and E-Learning Techniques in the Sri Lankan Context
Authors: M. G. N. A. S. Fernando
Abstract:
This study uses a researchable framework to improve the quality of ICT education and the Teaching Learning Assessment/ Evaluation (TLA/TLE) process. It utilizes existing resources while improving the methodologies along with pedagogical techniques and e-Learning approaches used in the secondary schools of Sri Lanka. The study was carried out in two phases. Phase I focused on investigating the factors which affect the quality of ICT education. Based on the key factors of phase I, the Phase II focused on the design of an Experimental Application Model with 6 activity levels. Each Level in the Activity Model covers one or more levels in the Revised Bloom’s Taxonomy. Towards further enhancement of activity levels, other pedagogical techniques (activity based learning, e-learning techniques, problem solving activities and peer discussions etc.) were incorporated to each level in the activity model as appropriate. The application model was validated by a panel of teachers including a domain expert and was tested in the school environment too. The validity of performance was proved using 6 hypotheses testing and other methodologies. The analysis shows that student performance with problem solving activities increased by 19.5% due to the different treatment levels used. Compared to existing process it was also proved that the embedded techniques (mixture of traditional and modern pedagogical methods and their applications) are more effective with skills development of teachers and students.Keywords: activity models, Bloom’s taxonomy, ICT education, pedagogies
Procedia PDF Downloads 1628354 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria
Authors: Shittu Ahmed Tajudeen
Abstract:
This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model
Procedia PDF Downloads 451