Search results for: gateway mathematics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 621

Search results for: gateway mathematics

501 Building Teacher Capacity: Including All Students in Mathematics Experiences

Authors: Jay-R M. Mendoza

Abstract:

In almost all mathematics classrooms, students demonstrated discrepancies in their knowledge, skills, and understanding. OECD reports predicted that this continued to aggravate as not all teachers were sufficiently trained to handle this concentration. In response, the paper explored the potential of reSolve’s professional learning module 3 (PLM3) as an affordable and accessible professional development (PD) resource. Participants’ hands-on experience and exposure to PLM3 were audio recorded. After it was transcribed and examined and their work samples were analysed, there were four issues emerged: (1) criticality of conducting preliminary data collections and increasing the validity of inferences about what students can and cannot do by addressing the probabilistic nature of their performance; (2) criticality of the conclusion: a > b and/or (a-b) ∈ Z⁺ among students’ algebraic reasoning; (3) enabling and extending prompts provided by reSolve were found useful; and (4) dynamic adaptation of reSolve PLM3 through developing transferable skills and collaboration among teachers. PLM3 provided valuable insights on assessment, teaching, and planning to include all students in mathematics experiences.

Keywords: algebraic reasoning, building teacher capacity, including all students in mathematics experiences, professional development

Procedia PDF Downloads 124
500 Pre-Service Mathematics Teachers’ Mental Construction in Solving Equations and Inequalities Using ACE Teaching Cycle

Authors: Abera Kotu, Girma Tesema, Mitiku Tadesse

Abstract:

This study investigated ACE supported instruction and pre-service mathematics teachers’ mental construction in solving equations and inequalities. A mixed approach with concurrent parallel design was employed. It was conducted on two intact groups of regular first-year pre-service mathematics teachers at Fiche College of Teachers’ Education in which one group was assigned as an intervention group and the other group as a comparison group using the lottery method. There were 33 participants in the intervention and 32 participants in the comparison. Six pre-service mathematics teachers were selected for interview using purposive sampling based on pre-test results. An instruction supported with ACE cycle was given to the intervention group for two weeks duration of time. Written tasks, interviews, and observations were used to collect data. Data collected from written tasks were analyzed quantitatively using independent samples t-test and effect size. Data collected from interviews and observations were analyzed narratively. The findings of the study uncovered that ACE-supported instruction has a moderate effect on Pre-service Mathematics Teachers’ levels of conceptualizations of action, process, object, ad schema. Moreover, the ACE supported group out scored and performed better than the usual traditional method supported groups across the levels of conceptualization. The majority of pre-service mathematics teachers’ levels of conceptualizations were at action and process levels and their levels of conceptualization were linked with genetic decomposition more at action and object levels than object and schema. The use of ACE supported instruction is recommended to improve pre-service mathematics teachers’ mental construction.

Keywords: ACE teaching cycle, APOS theory, mental construction, genetic composition

Procedia PDF Downloads 21
499 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors

Authors: Jing Yuan, Hongwei Yang

Abstract:

This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.

Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel

Procedia PDF Downloads 336
498 The Use of Technology in Mathematics Learning (1995-2024): A Bibliometric Analysis

Authors: Rahma Adinda Sartika

Abstract:

The use of technology in learning mathematics has received a positive response from both students and teachers, so many researchers have conducted research on this theme. Based on the findings carried out in this study, 807 documents relevant to this theme have been published in Scopus from 1995-2024. After going through the stages of identification, screening, eligibility, and including, the documents that meet the criteria are 227 documents. These documents are then analyzed using the bibliometric method so that it can be seen that the most published documents in the Scopus database occurred in 2020, with 38 documents, and the lowest was from 1996 to 2000 and 2004 to 2007, namely, no documents published. The highest number of citations is in documents published in 2018, with a total of 349 citations, so the h-index is higher than the others. The country that published the most documents relevant to this theme is Indonesia with a total of 91 documents. The second largest is the United States, with a total of 28 published documents, and the third largest is China, with a total of 15 documents. Indonesia and the United States have the most working relationships between countries compared to other countries. The focus of research related to this theme is 1) mathematics learning, 2) learning systems, 3) engineering education, 4) technology and 5) mathematical concepts.

Keywords: technology, bibliometric, mathematics learning, mathematical concepts

Procedia PDF Downloads 61
497 A Qualitative Study: Teaching Fractions with Augmented Reality for 5th Grade Students in Turkey

Authors: Duygu Özdemir, Bilal Özçakır

Abstract:

Usage of augmented reality in education helps students to make sense of the three-dimensional world of mathematics. In this study, it was aimed to develop activities about fractions for 5th-grade students by augmented reality and also aimed to assess these activities in terms of students’ understanding and views. Data obtained from 60 students in a private school in Marmaris, Turkey was obtained through classroom observations, students’ worksheets and semi-structured interviews during two weeks. Data analysis was conducted by using constant-comparative analysis which leads to meaningful categories of findings. Findings of this study indicated that usage of augmented reality is a facilitator to make concretize and provide real-life application for fractions. Moreover, students’ opinions about its usage were lead to categories as benefit for learning, enjoyment and creating awareness of usage of augmented reality in mathematics education. In general, this study could be a bridge to show the contributions of augmented reality applications to mathematics education and also highlights that augmented reality could be used with subjects like fractions rather than subjects only in geometry learning domain.

Keywords: augmented reality, mathematics, fractions, students

Procedia PDF Downloads 200
496 An Exploration of the Integration of Guided Play With Explicit Instruction in Early Childhood Mathematics

Authors: Anne Tan, Kok-Sing Tang, Audrey Cooke

Abstract:

Play has always been a prominent pedagogy in early childhood. However, there is growing evidence of success in students’ learning using explicit instruction, especially in literacy in the early years. There is also limited research using explicit instruction in early childhood mathematics, and play is usually prominently mentioned. This proposed research aims to investigate the possibilities and benefits of integrating guided play with explicit instruction in early childhood mathematics education. While play has traditionally been a prominent pedagogy in early childhood, there is growing evidence of success in student learning through explicit instruction, particularly in literacy. However, limited research exists on the integration of explicit instruction in early childhood mathematics, where play remains prominently mentioned. This study utilises a multiple case study methodology to gather data and provide immediate opportunities for curriculum improvement. The research will commence with semi-structured interviews to gain insights into educators' background knowledge. Highly structured observations will be conducted to record the frequency and manner in which guided play is integrated with specific elements of explicit instruction during mathematics teaching in early childhood. To enhance the observations, video recordings will be made using cameras with video settings and Microsoft Teams meeting recordings. In addition to interviews and observations, educators will maintain journals and use the Microsoft Teams platform for self-reflection on the integration of guided play and explicit instruction in their classroom practices and experiences. The study participants will include educators with early childhood degrees and students in years one and two. The primary goal of this research is to inform the benefits of integrating two high-impact pedagogies, guided play, and explicit instruction, for enhancing student learning outcomes in mathematics education. By exploring the integration of these pedagogical approaches, this study aims to contribute to the development of effective instructional strategies in early childhood mathematics education.

Keywords: early childhood, early childhood mathematics, early childhood numbers, guided play, play-based learning, explicit instruction

Procedia PDF Downloads 65
495 Prospective Mathematics Teachers' Content Knowledge on the Definition of Limit and Derivative

Authors: Reyhan Tekin Sitrava

Abstract:

Teachers should have robust and comprehensive content knowledge for effective mathematics teaching. It was explained that content knowledge includes knowing the facts, truths, and concepts; explaining the reasons behind these facts, truths and concepts, and making relationship between the concepts and other disciplines. By virtue of its importance, it will be significant to explore teachers and prospective teachers’ content knowledge related to variety of topics in mathematics. From this point of view, the purpose of this study was to investigate prospective mathematics teachers’ content knowledge. Particularly, it was aimed to reveal the prospective teachers’ knowledge regarding the definition of limit and derivate. To achieve the purpose and to get in-depth understanding, a qualitative case study method was used. The data was collected from 34 prospective mathematics teachers through a questionnaire containing 2 questions. The first question required the prospective teachers to define the limit and the second one required to define the derivative. The data was analyzed using content analysis method. Based on the analysis of the data, although half of the prospective teachers (50%) could write the definition of the limit, nine prospective teachers (26.5%) could not define limit. However, eight prospective teachers’ definition was regarded as partially correct. On the other hand, twenty-seven prospective teachers (79.5%) could define derivative, but seven of them (20.5%) defined it partially. According to the findings, most of the prospective teachers have robust content knowledge on limit and derivative. This result is important because definitions have a virtual role in learning and teaching of mathematics. More specifically, definition is starting point to understand the meaning of a concept. From this point of view, prospective teachers should know the definitions of the concepts to be able to teach them correctly to the students. In addition, they should have knowledge about the relationship between limit and derivative so that they can explain these concepts conceptually. Otherwise, students may memorize the rules of calculating the derivative and the limit. In conclusion, the present study showed that most of the prospective mathematics teachers had enough knowledge about the definition of derivative and limit. However, the rest of them should learn their definition conceptually. The examples of correct, partially correct, and incorrect definition of both concepts will be presented and discussed based on participants’ statements. This study has some implications for instructors. Instructors should be careful about whether students learn the definition of these concepts or not. In order to this, the instructors may give prospective teachers opportunities to discuss the definition of these concepts and the relationship between the concepts.

Keywords: content knowledge, derivative, limit, prospective mathematics teachers

Procedia PDF Downloads 221
494 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables

Authors: Hilal Karakuş, Berrin Akman

Abstract:

Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.

Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions

Procedia PDF Downloads 352
493 Determining Variables in Mathematics Performance According to Gender in Mexican Elementary School

Authors: Nora Gavira Duron, Cinthya Moreda Gonzalez-Ortega, Reyna Susana Garcia Ruiz

Abstract:

This paper objective is to analyze the mathematics performance in the Learning Evaluation National Plan (PLANEA for its Spanish initials: Plan Nacional para la Evaluación de los Aprendizajes), applied to Mexican students who are enrolled in the last elementary-school year over the 2017-2018 academic year. Such test was conducted nationwide in 3,573 schools, using a sample of 108,083 students, whose average in mathematics, on a scale of 0 to 100, was 45.6 points. 75% of the sample analyzed did not reach the sufficiency level (60 points). It should be noted that only 2% got a 90 or higher score result. The performance is analyzed while considering whether there are differences in gender, marginalization level, public or private school enrollment, parents’ academic background, and living-with-parents situation. Likewise, this variable impact (among other variables) on school performance by gender is evaluated, considering multivariate logistic (Logit) regression analysis. The results show there are no significant differences in mathematics performance regarding gender in elementary school; nevertheless, the impact exerted by mothers who studied at least high school is of great relevance for students, particularly for girls. Other determining variables are students’ resilience, their parents’ economic status, and the fact they attend private schools, strengthened by the mother's education.

Keywords: multivariate regression analysis, academic performance, learning evaluation, mathematics result per gender

Procedia PDF Downloads 148
492 Project HDMI: A Hybrid-Differentiated Mathematics Instruction for Grade 11 Senior High School Students at Las Piñas City Technical Vocational High School

Authors: Mary Ann Cristine R. Olgado

Abstract:

Diversity in the classroom might make it difficult to promote individualized learning, but differentiated instruction that caters to students' various learning preferences may prove to be beneficial. Hence, this study examined the effectiveness of Hybrid-Differentiated Mathematics Instruction (HDMI) in improving the students’ academic performance in Mathematics. It employed the quasi-experimental research design by using a comparative analysis of the two variables: the experimental and control groups. The learning styles of the students were identified using the Grasha-Riechmann Student Learning Style Scale (GRSLSS), which served as the basis for designing differentiated action plans in Mathematics. In addition, adapted survey questionnaires, pre-tests, and post-tests were used to gather information and were analyzed using descriptive and correlational statistics to find the relationship between variables. The experimental group received differentiated instruction for a month, while the control group received traditional teaching instruction. The study found that Hybrid-Differentiated Mathematics Instruction (HDMI) improved the academic performance of Grade 11-TVL students, with the experimental group performing better than the control group. This program has effectively tailored the teaching methods to meet the diverse learning needs of the students, fostering and enhancing a deeper understanding of mathematical concepts in Statistics & Probability, both within and beyond the classroom.

Keywords: differentiated instruction, hybrid, learning styles, academic performance

Procedia PDF Downloads 62
491 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals

Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman

Abstract:

Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.

Keywords: EEG, MLP, MFCC, intrinsic motivational factor

Procedia PDF Downloads 368
490 Academic Motivation Maintenance for Students While Solving Mathematical Problems in the Middle School

Authors: M. Rodionov, Z. Dedovets

Abstract:

The level and type of student academic motivation are the key factors in their development and determine the effectiveness of their education. Improving motivation is very important with regard to courses on middle school mathematics. This article examines the general position regarding the practice of academic motivation. It also examines the particular features of mathematical problem solving in a school setting.

Keywords: teaching strategy, mathematics, motivation, student

Procedia PDF Downloads 447
489 Teaching Behaviours of Effective Secondary Mathematics Teachers: A Study in Dhaka, Bangladesh

Authors: Asadullah Sheikh, Kerry Barnett, Paul Ayres

Abstract:

Despite significant progress in access, equity and public examination success, poor student performance in mathematics in secondary schools has become a major concern in Bangladesh. A substantial body of research has emphasised the important contribution of teaching practices to student achievement. However, this has not been investigated in Bangladesh. Therefore, the study sought to find out the effectiveness of mathematics teaching practices as a means of improving secondary school mathematics in Dhaka Municipality City (DMC) area, Bangladesh. The purpose of this study was twofold, first, to identify the 20 highest performing secondary schools in mathematics in DMC, and second, to investigate the teaching practices of mathematics teachers in these schools. A two-phase mixed method approach was adopted. In the first phase, secondary source data were obtained from the Board of Intermediate and Secondary Education (BISE), Dhaka and value-added measures used to identify the 20 highest performing secondary schools in mathematics. In the second phase, a concurrent mixed method design, where qualitative methods were embedded within a dominant quantitative approach was utilised. A purposive sampling strategy was used to select fifteen teachers from the 20 highest performing secondary schools. The main sources of data were classroom teaching observations, and teacher interviews. The data from teacher observations were analysed with descriptive and nonparametric statistics. The interview data were analysed qualitatively. The main findings showed teachers adopt a direct teaching approach which incorporates orientation, structuring, modelling, practice, questioning and teacher-student interaction that creates an individualistic learning environment. The variation in developmental levels of teaching skill indicate that teachers do not necessarily use the qualitative (i.e., focus, stage, quality and differentiation) aspects of teaching behaviours effectively. This is the first study to investigate teaching behaviours of effective secondary mathematics teachers within Dhaka, Bangladesh. It contributes in an international dimension to the field of educational effectiveness and raise questions about existing constructivist approaches. Further, it contributes to important insights about teaching behaviours that can be used to inform the development of evidence-based policy and practice on quality teaching in Bangladesh.

Keywords: effective teaching, mathematics, secondary schools, student achievement, value-added measures

Procedia PDF Downloads 241
488 Predictive Power of Achievement Motivation on Student Engagement and Collaborative Problem Solving Skills

Authors: Theresa Marie Miller, Ma. Nympha Joaquin

Abstract:

The aim of this study was to check the predictive power of social-oriented and individual-oriented achievement motivation on student engagement and collaborative problem-solving skills in mathematics. A sample of 277 fourth year high school students from the Philippines were selected. Surveys and videos of collaborative problem solving activity were used to collect data from respondents. The mathematics teachers of the participants were interviewed to provide qualitative support on the data. Systemaitc correlation and regression analysis were employed. Results of the study showed that achievement motivations−SOAM and IOAM− linearly predicted student engagement but was not significantly associated to the collaborative problem-solving skills in mathematics. Student engagement correlated positively with collaborative problem-solving skills in mathematics. The results contribute to theorizing about the predictive power of achievement motivations, SOAM and IOAM on the realm of academic behaviors and outcomes as well as extend the understanding of collaborative problem-solving skills of 21st century learners.

Keywords: achievement motivation, collaborative problem-solving skills, individual-oriented achievement motivation, social-oriented achievement motivation, student engagement

Procedia PDF Downloads 314
487 A Proposal for Professional Development of Mathematics Teachers in the Kingdom of Saudi Arabia According to the Orientation of Science, Technology, Engineering and Mathematics (STEM)

Authors: Ali Taher Othman Ali

Abstract:

The aim of this research is to provide a draft proposal for the professional development of mathematics teachers in accordance with the orientation of science, technology, engineering and mathematics which is known by the abbreviation STEM, as a modern and contemporary orientation in the teaching and learning of mathematics and in order to achieve the objective of the research, the researcher used the theoretical descriptive method through the induction of the literature of education and the previous studies and experiments related to the topic. The researcher concluded by providing the proposal according to five basic axes, the first axe: professional development as a system, and its requirements include: development of educational systems, and allocate sufficient budgets to support the requirements of teaching STEM, identifying mechanisms for incentives and rewards for teachers attending professional development programs based on STEM; the second: development of in-depth knowledge content and its requirements include: basic sciences content development for STEM, linking the scientific understanding of teachers with real-world issues and problems, to provide the necessary resources to expand teachers' knowledge in this area; the third: the necessary pedagogical skills of teachers in the field of STEM, and its requirements include: identification of the required training and development needs and the mechanism of determining these needs, the types of professional development programs and the mechanism of designing it, the mechanisms and places of execution, evaluation and follow-up; the fourth: professional development strategies and mechanisms in the field of STEM, and its requirements include: using a variety of strategies to enable teachers to design and transfer effective educational experiences which reflect their scientific mastery in the fields of STEM, provide learning opportunities, and developing the skills of procedural research to generate new knowledge about the STEM; the fifth: to support professional development in the area of STEM, and its requirements include: support leadership within the school, provide a clear and appropriate opportunities for professional development for teachers within the school through professional learning communities, building partnerships between the Ministry of education and the local and international community institutions. The proposal includes other factors that should be considered when implementing professional development programs for mathematics teachers in the field of STEM.

Keywords: professional development, mathematics teachers, the orientation of science, technology, engineering and mathematics (STEM)

Procedia PDF Downloads 408
486 Cognitive and Environmental Factors Affecting Graduate Student Perception of Mathematics

Authors: Juanita Morris

Abstract:

The purpose of this study will examine the mediating relationships between the theories of intelligence, mathematics anxiety, gender stereotype threat, meta-cognition and math performance through the use of eye tracking technology, affecting student perception and problem-solving abilities. The participants will consist of (N=80) female graduate students. Test administered were the Abbreviated Math Anxiety Scale, Tobii Eye Tracking software, gender stereotype threat through Google images, and they will be asked to describe their problem-solving approach allowed to measure metacognition. Participants will be administered mathematics problems while having gender stereotype threat shown to them through online images while being directed to look at the eye tracking software Tobii. We will explore this by asking ‘Is mathematics anxiety associated with the theories of intelligence and gender stereotype threat and how does metacognition and math performance place a role in mediating those perspectives?’. It is hypothesized that math-anxious students are more likely affected by the gender stereotype threat and that may play a role in their performance? Furthermore, we also want to explore whether math anxious students are more likely to be an entity theorist than incremental theorist and whether those who are math anxious will be more likely to be fixated on variables associated with coefficients? Path analysis and independent samples t-test will be used to generate results for this study. We hope to conclude that both the theories of intelligence and metacognition mediate the relationship between mathematics anxiety and gender stereotype threat.

Keywords: math anxiety, emotions, affective domains fo learning, cognitive underlinings

Procedia PDF Downloads 270
485 Application of Constructivist-Based (5E’s) Instructional Approach on Pupils’ Retention: A Case Study in Primary Mathematics in Enugu State

Authors: Ezeamagu M.U, Madu B.C

Abstract:

This study was designed to investigate the efficacy of 5Es constructivist-based instructional model on students’ retention in primary Mathematics. 5Es stands for Engagement, Exploration, Explanation, Elaboration and Evaluation. The study adopted the pre test post test non-equivalent control group quasi-experimental research design. The sample size for the study was one hundred and thirty four pupils (134), seventy six male (76) and fifty eight female (58) from two primary schools in Nsukka education zone. Two intact classes in each of the sampled schools comprising all the primary four pupils were used. Each of the schools was given the opportunity of being assigned randomly to either experimental or control group. The Experimental group was taught using 5Es model while the control group was taught using the conventional method. Two research questions were formulated to guide the study and three hypotheses were tested at p ≤ 0. 05. A Fraction Achievement Test (FAT) of ten (10) questions were used to obtain data on pupils’ retention. Research questions were answered using mean and standard deviation while hypotheses were tested using analysis of covariance (ANCOVA). The result revealed that the 5Es model was more effective than the conventional method of teaching in enhancing pupils’ performance and retention in mathematics, secondly there is no significant difference in the mean retention scores of male and female students taught using 5Es instructional model. Based on the findings, it was recommended among other things, that the 5Es instructional model should be adopted in the teaching of mathematics in primary level of the educational system. Seminar, workshops and conferences should be mounted by professional bodies, federal and state ministries of education on the use of 5Es model. This will enable the mathematics educator, serving teachers, students and all to benefit from the approach.

Keywords: constructivist, education, mathematics, primary, retention

Procedia PDF Downloads 451
484 Learners’ Reactions to Writing Activities in an Elementary Algebra Classroom

Authors: Early Sol A. Gadong, Lourdes C. Zamora, Jonny B. Pornel, Aurora Fe C. Bautista

Abstract:

Various research has shown that writing allows students to engage in metacognition and provides them with a venue to communicate their disposition towards what they are learning. However, few studies have explored students’ feelings about the incorporation of such writing activities in their mathematics classes. Through reflection sheets, group discussions, and interviews, this mixed-methods study explored students’ perceptions and insights on supplementary writing activities in their Elementary Algebra class. Findings revealed that while students generally have a positive regard for writing activities, they have conflicting views about how writing activities can help them in their learning. A big majority contend that writing activities can enhance the learning of mathematical content and attitudes towards mathematics if they allow students to explore and synthesize what they have learned and reflected on their emotional disposition towards mathematics. Also, gender does not appear to play a significant role in students’ reactions to writing activities.

Keywords: writing in math, metacognition, affective factors in learning, elementary algebra classroom

Procedia PDF Downloads 444
483 Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski

Abstract:

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

Keywords: cluster analysis, education, mathematics, profiles

Procedia PDF Downloads 127
482 The Influence of Concrete Pictorial Abstract Teaching Approach on Students' Concepts Understanding and Retention in Mathematics in Rwandan Lower Secondary Schools

Authors: Emmanuel Iyamuremye, Irenee Ndayambaje

Abstract:

This study investigated the influence of Concrete Pictorial Abstract (CPA) teaching approach on mathematics achievement based on a sample of eighth-grade students (N = 10,345) from the Rwandan Lower Secondary School quasi-experimental study with pre-test and post-test control group of 2019 (RLSQES19). Key aspects studied included mathematics concept understanding and mathematics concept retention and how these are influenced by teacher's teaching approach. Specifically, the study aimed to a.) investigate students' concept understanding and concept retention in mathematics when exposed to CPA approach and to those exposed to non-CPA approach before and after the intervention, and b.) ascertain the significant difference between the performance of the students exposed to CPA approach and those exposed to non-CPA approach in terms of post-test scores and retention test scores. Two groups (control and experimental) undergone pre-test, post-test, and retention test. The assignment of control and experimental group among senior two classes from 10 schools was done randomly. The materials used to determine the performance of the students is a teacher-made test. Descriptive statistics and ANCOVA were used for the analysis of the study. For determining the improvement in concept understanding of mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post test score. The level of performance of the two groups in the pre-test is below average level. During the post-test and retention test, the performance of students in non-CPA group is on average level, and students in CPA group are on above average level. Hakes methods of calculating gain revealed higher significant performance in the post-test and retention test of CPA group of students than non-CPA group of students.

Keywords: concept understanding, concept retention, performance, teaching approach

Procedia PDF Downloads 126
481 Problem Solving in Mathematics Education: A Case Study of Nigerian Secondary School Mathematics Teachers’ Conceptions in Relation to Classroom Instruction

Authors: Carol Okigbo

Abstract:

Mathematical problem solving has long been accorded an important place in mathematics curricula at every education level in both advanced and emerging economies. Its classroom approaches have varied, such as teaching for problem-solving, teaching about problem-solving, and teaching mathematics through problem-solving. It requires engaging in tasks for which the solution methods are not eminent, making sense of problems and persevering in solving them by exhibiting processes, strategies, appropriate attitude, and adequate exposure. Teachers play important roles in helping students acquire competency in problem-solving; thus, they are expected to be good problem-solvers and have proper conceptions of problem-solving. Studies show that teachers’ conceptions influence their decisions about what to teach and how to teach. Therefore, how teachers view their roles in teaching problem-solving will depend on their pedagogical conceptions of problem-solving. If teaching problem-solving is a major component of secondary school mathematics instruction, as recommended by researchers and mathematics educators, then it is necessary to establish teachers’ conceptions, what they do, and how they approach problem-solving. This study is designed to determine secondary school teachers’ conceptions regarding mathematical problem solving, its current situation, how teachers’ conceptions relate to their demographics, as well as the interaction patterns in the mathematics classroom. There have been many studies of mathematics problem solving, some of which addressed teachers’ conceptions using single-method approaches, thereby presenting only limited views of this important phenomenon. To address the problem more holistically, this study adopted an integrated mixed methods approach which involved a quantitative survey, qualitative analysis of open-ended responses, and ethnographic observations of teachers in class. Data for the analysis came from a random sample of 327 secondary school mathematics teachers in two Nigerian states - Anambra State and Enugu State who completed a 45-item questionnaire. Ten of the items elicited demographic information, 11 items were open-ended questions, and 25 items were Likert-type questions. Of the 327 teachers who responded to the questionnaires, 37 were randomly selected and observed in their classes. Data analysis using ANOVA, t-tests, chi-square tests, and open coding showed that the teachers had different conceptions about problem-solving, which fall into three main themes: practice on exercises and word application problems, a process of solving mathematical problems, and a way of teaching mathematics. Teachers reported that no period is set aside for problem-solving; typically, teachers solve problems on the board, teach problem-solving strategies, and allow students time to struggle with problems on their own. The result shows a significant difference between male and female teachers’ conception of problems solving, a significant relationship among teachers’ conceptions and academic qualifications, and teachers who have spent ten years or more teaching mathematics were significantly different from the group with seven to nine years of experience in terms of their conceptions of problem-solving.

Keywords: conceptions, education, mathematics, problem solving, teacher

Procedia PDF Downloads 76
480 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers

Authors: Ayşegül Çabuk, Mine Işıksal

Abstract:

Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.

Keywords: reasoning, mathematics learning, middle grade students

Procedia PDF Downloads 423
479 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 77
478 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 482
477 Awakeness, Awareness and Learning Mathematics for Arab Students: A Pilot Study

Authors: S. Rawashdi, D. Bshouty

Abstract:

This paper aimed at discussing how to urge middle and high school Arab students in Israel to be aware of the importance of and investing in learning mathematics. In the first phase of the study, three questionnaires were passed to two nine-grade classes, one on Awareness, one on Awakeness and one on Learning. One of the two classes was an outstanding class from a public school (PUBS) of 31 students, and the other a heterogeneous class from a private school (PRIS) with 31 students. The Learning questionnaire which was administrated to the Awareness and Awareness topics was passed to PRIS and the Awareness and Awareness Questionnaires were passed to the PUBS class After two months we passed the post-questionnaire to both classes to validate the long-term impact of the study. The findings of the study show that awakeness and awareness processes have an effect on the math learning process, on its context in students' daily lives and their growing interest in learning math.

Keywords: awakeness, awareness, learning mathematics, pupils

Procedia PDF Downloads 140
476 Use of Mobile Phone Applications in Teaching Precalculus

Authors: Jay-R. Hosana Leonidas, Jayson A. Lucilo

Abstract:

The K-12 Curriculum in the Philippines shed light to mathematics education as it recognizes the use of smartphones/mobile phones as appropriate tools necessary in teaching mathematics. However, there were limited pieces of evidence on the use of these devices in teaching and learning process. This descriptive study developed lessons integrating the use of mobile phone applications with basis on low-level competencies of students in Precalculus and determined its effects on students’ conceptual understanding, procedural skills, and attitudes towards Precalculus. Employing Bring Your Own Device (BYOD) scheme in the study, lessons developed were conducted among Grade 11 Science, Technology, Engineering, and Mathematics (STEM) students at Central Bicol State University of Agriculture for the academic year 2018-2019. This study found that there is a significant difference between the competency levels of students along conceptual understanding and procedural skills prior to and after the conduct of lessons developed. Also, it disclosed that the use of mobile phone applications had positive effects on students’ attitudes towards Precalculus. Thus, the use of mobile phone applications in teaching Precalculus can enrich students’ understanding of concepts and procedural skills (solving and graphing skills) and can increase students’ motivation, self-confidence, and enjoyment in dealing with Precalculus.

Keywords: bring your own device, mathematics education, mobile phone applications, senior high school

Procedia PDF Downloads 164
475 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 598
474 Effectiveness of Geogebra Training Activities through Teams for Junior High School Teachers

Authors: Idha Novianti, Suci Nurhayati, Puryati, Elang Krisnadi

Abstract:

Community service activities are activities of the academic community in practicing and cultivating science, knowledge, and technology to advance the general welfare and educate the nation's life as described in the Higher Education Law. Training activities on the use of GeoGebra software are an option because GeoGebra software is software that is easy to operate and complete in the presentation of graphic design. The training activity was held for 3 hours online via teams and 3 hours offline. Involving 15 junior high school mathematics teachers located around south Tangerang. As a result, all teachers were satisfied with the activity, and they had additional new knowledge and skills to teach mathematics in the topic of geometry and algebra. The existence of new knowledge made the participants increase their confidence in developing mathematical science for students at school.

Keywords: geogebra, Ms. teams, junior high school teacher, mathematics

Procedia PDF Downloads 118
473 From Equations to Structures: Linking Abstract Algebra and High-School Algebra for Secondary School Teachers

Authors: J. Shamash

Abstract:

The high-school curriculum in algebra deals mainly with the solution of different types of equations. However, modern algebra has a completely different viewpoint and is concerned with algebraic structures and operations. A question then arises: What might be the relevance and contribution of an abstract algebra course for developing expertise and mathematical perspective in secondary school mathematics instruction? This is the focus of this paper. The course Algebra: From Equations to Structures is a carefully designed abstract algebra course for Israeli secondary school mathematics teachers. The course provides an introduction to algebraic structures and modern abstract algebra, and links abstract algebra to the high-school curriculum in algebra. It follows the historical attempts of mathematicians to solve polynomial equations of higher degrees, attempts which resulted in the development of group theory and field theory by Galois and Abel. In other words, algebraic structures grew out of a need to solve certain problems, and proved to be a much more fruitful way of viewing them. This theorems in both group theory and field theory. Along the historical ‘journey’, many other major results in algebra in the past 150 years are introduced, and recent directions that current research in algebra is taking are highlighted. This course is part of a unique master’s program – the Rothschild-Weizmann Program – offered by the Weizmann Institute of Science, especially designed for practicing Israeli secondary school teachers. A major component of the program comprises mathematical studies tailored for the students at the program. The rationale and structure of the course Algebra: From Equations to Structures are described, and its relevance to teaching school algebra is examined by analyzing three kinds of data sources. The first are position papers written by the participating teachers regarding the relevance of advanced mathematics studies to expertise in classroom instruction. The second data source are didactic materials designed by the participating teachers in which they connected the mathematics learned in the mathematics courses to the school curriculum and teaching. The third date source are final projects carried out by the teachers based on material learned in the course.

Keywords: abstract algebra , linking abstract algebra and school mathematics, school algebra, secondary school mathematics, teacher professional development

Procedia PDF Downloads 146
472 First-Year Undergraduate Students' Dilemma with Kinematics Graphs

Authors: Itumeleng Phage

Abstract:

Students’ comprehension of graphs may be affected by the characteristics of the discipline in which the graph is used, the type of the task as well as the background of the students who are the readers or interpreters of the graph. This research study investigated these aspects of the graph comprehension of 152 first-year undergraduate physics students by comparing their responses to corresponding tasks in the mathematics and physics disciplines. The discipline characteristics were analysed for four task-related constructs namely coordinates, representations, area and slope. Students’ responses to corresponding visual decoding and judgement tasks set in mathematics and kinematics contexts were statistically compared. The effects of the participants’ gender, year of school completion and study course were determined as reader characteristics. The results of the empirical study indicated that participants generally transferred their mathematics knowledge on coordinates and representation of straight line graphs to the physics contexts, but not in the cases of parabolic and hyperbolic functions or area under graphs. Insufficient understanding of the slope concept contributed to weak performances on this construct in both mathematics and physics contexts. Discipline characteristics seem to play a vital role in students’ understanding, while reader characteristics had insignificant to medium effects on their responses.

Keywords: kinematics graph, discipline characteristics, constructs, coordinates, representations, area and slope

Procedia PDF Downloads 260