Search results for: color spectrum analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29590

Search results for: color spectrum analysis

29470 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 61
29469 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach

Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier

Abstract:

The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.

Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis

Procedia PDF Downloads 106
29468 The Resistance Reader Program Based on Image Processing

Authors: Janpen Srijan, Nahathai Tanmang, Thanit Purathanang, Anun Dowchern, Saksit Summart, Seangduan Kampimpa

Abstract:

This paper presents the resistance reader program based on image processing by using MATLAB. The proposed program is divided into six parts; the first part is the web camera; the second part is a watt selection before shooting the resistor; the third part is a part of finding the position of the color on the mid-point of resistor; the fourth part is a part of identifying color code of the resistor; the fifth part is a part of taking the number of values for each color for resistance calculation and the last part is a part of displaying result of resistance value. The experimental result of the resistance reader program based on image processing was able to display the resistance value of resistor. The accuracy of proposed program is 85 percent for 1 watt resistor. It has 15 percent of reading error because a problem with the color code of some resistor was too bright.

Keywords: resistance reader program, image processing, resistor, MATLAB

Procedia PDF Downloads 390
29467 Human Connection over Technology: Evidence, Pitfalls, and Promise of Collaboration Technologies in Promoting Full Spectrum Participation of the Virtual Workforce

Authors: Michelle Marquard

Abstract:

The evidence for collaboration technologies (CTs) as a source of business productivity has never been stronger, and grows each day. At the same time, paradoxically, there is an increasingly greater concern about the challenge CTs present to the unity and well-being of the virtual workforce than ever before, but nowhere in the literature has an empirical understanding of these linkages been set out. This study attempted to address by using virtual distance as a measure of the efficacy of CTs to reduce the psychological distance among people. Data from 350 managers and 101 individual contributors across twelve functions in six major industries showed that business value is related to collaboration (r=.84, p < .01), which, in turn, is associated with full spectrum participation (r=.60, p < .01), a summative function of inclusion, integration, and we-intention. Further, virtual distance is negatively related to both collaboration (r=-.54, p < .01) and full spectrum participation (r=-.26, p < .01). Additionally, CIO-CDO relationship is a factor in the degree to which virtual distance is managed in the organization (r=-.26, p < .01). Overall, the results support the positive relationship between business value and collaboration. They also suggest that the extent to which collaboration can be fostered may depend on the degree of full spectrum participation or the level of inclusion, integration, and we-intention among members. Finally, the results indicate that CTs, when managed wisely to lower virtual distance, are a compelling concomitant to collaboration and full spectrum participation. A strategic outcome of this study is an instrumental blueprint of CTs and virtual distance in relation to full spectrum participation that should serve as a shared dashboard for CIOs, CHROs, and CDOs.

Keywords: business value, collaboration, inclusion, integration, we-intention, full spectrum participation, collaboration technologies, virtual distance

Procedia PDF Downloads 346
29466 Teaching Practitioners to Use Technology to Support and Instruct Students with Autism Spectrum Disorders

Authors: Nicole Nicholson, Anne Spillane

Abstract:

The purpose of this quantitative, descriptive analysis was to determine the success of a post-graduate new teacher education program, designed to teach educators the knowledge and skills necessary to use technology in the classroom, improve the ability to communicate with stakeholders, and implement EBPs and UDL principles into instruction for students with ASD (Autism Spectrum Disorders ). The success of candidates (n=20) in the program provided evidence as to how candidates were effectively able to use technology to create meaningful learning opportunities and implement EBPs for individuals with ASD. ≥90% of participants achieved the following competencies: podcast creation; technology used to share information about assistive technology; and created a resource website on ASD (including information on EBPs, local and national support groups, ASD characteristics, and the latest research on ASD). 59% of students successfully created animation. Results of the analysis indicated that the teacher education program was successful in teaching candidates desired competencies during its first year of implementation.

Keywords: autism spectrum disorders, ASD, evidence based practices, EBP, universal design for learning, UDL

Procedia PDF Downloads 163
29465 Effects of Microwave Heating Rate on the Color, Total Anthocyanin Content and Total Phenolics of Elderberry Juice during Come-up-Time

Authors: Balunkeswar Nayak, Hanjun Cao, Xinruo Zhang

Abstract:

Elderberry could protect human health from oxidative stress, and reduce aging and certain cardiovascular diseases due to the presence of bioactive phytochemicals with high antioxidant capacity. However, these bioactive phytochemicals, such as anthocyanins and other phenolic acids, are susceptible to degradation during processing of elderberries to juice, jam, and powder due to intensity and duration of thermal exposure. The effects of microwave heating rate during come-up-times, using a domestic 2450 MHz microwave, on the color, total anthocyanin content and total phenolics on elderberry juice was studied. With a variation of come-up-time from 30 sec to 15 min at different power levels (10–50 % of total wattage), the temperature of elderberry juice vary from 40.6 °C to 91.5 °C. However, the color parameters (L, A, and B), total anthocyanin content (using pH differential method) and total phenolics did not vary significantly when compared to the control samples.

Keywords: elderberry, microwave, color, thermal exposure

Procedia PDF Downloads 605
29464 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 323
29463 Reactive Dyed Superhydrophobic Cotton Fabric Production by Sol-Gel Method

Authors: Kuddis Büyükakıllı

Abstract:

The pretreated and bleached mercerized cotton fabric was dyed with reactive Everzol Brilliant Yellow 4GR (C.I. Yellow 160) dyestuff. Superhydrophobicity is provided to white and reactive dyed fabrics by using a nanotechnological sol-gel method with tetraethoxysilane and fluorcarbon water repellent agents by the two-step method. The effect of coating on color yield, fastness and functional properties of fabric was investigated. It was observed that water drop contact angles were higher in colorless coated fabrics compared to colored coated fabrics, there was no significant color change in colored superhydrophobic fabric and high color fastness values. Although there are no significant color losses in the fabrics after multiple washing and dry cleaning processes, water drop contact angles are greatly reduced.

Keywords: fluorcarbon water repellent agent, colored cotton fabric, sol-gel, superhydrophobic

Procedia PDF Downloads 120
29462 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 732
29461 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 138
29460 Stability of Property (gm) under Perturbation and Spectral Properties Type Weyl Theorems

Authors: M. H. M. Rashid

Abstract:

A Banach space operator T obeys property (gm) if the isolated points of the spectrum σ(T) of T which are eigenvalues are exactly those points λ of the spectrum for which T − λI is a left Drazin invertible. In this article, we study the stability of property (gm), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, by quasi-nilpotent operators, or more generally by algebraic operators commuting with T.

Keywords: Weyl's Theorem, Weyl Spectrum, Polaroid operators, property (gm)

Procedia PDF Downloads 180
29459 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.

Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring

Procedia PDF Downloads 365
29458 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series

Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee

Abstract:

This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.

Keywords: detrended fluctuation analysis, generalized hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum, time series analysis

Procedia PDF Downloads 393
29457 A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum

Authors: R. Bawazir, P. Jones

Abstract:

Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.

Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework

Procedia PDF Downloads 323
29456 Determination of Coffee Colour Changes After Mill Grinding

Authors: Katarzyna Grądecka-Jakubowska, Rusinek Robert, Marek Gancarz

Abstract:

The aim of the study was to analyze the process of roasting coffee beans in a convection–conduction roaster (CC) without a heat exchanger and a convection–conduction–radiation roaster (CCR) with a heat exchanger for determination of the colour of the coffee beans and coffee colour after mill. Arabica coffee from the following countries (regions) was used for the study: (1) Ethiopia Refisha, (2) Guatemala Santa Barbara, (3) Honduras El Puente, (4) Kenya Baragwi, (5) Brazil Beyond. The coffee beans were roasted using two types of roasters: convection–conduction roaster (CC) without a heat exchanger and a convection–conduction–radiation roaster (CCR) with a heat exchanger. The analysis of the color of coffee beans and ground coffee was carried out using the CIELab and RGB method using a Lovibond CAM-System 500 colorimeter (Great Britain). The device allows you to evaluate the color and record the image in a resolution of 752 × 582 pixels, saving each pixel as an RGB component. The time profile screen captured a sequence of images at fixed time intervals and displayed them on-line. The system, useful for assessing non-uniform or variable colors, allowed us to record the entire image or appropriate areas (surfaces) of the sample. Color is mathematically described by three components: L - lightness (luminance from 0 very to 100 very bright), (a) - color from green to magenta (from -120 to +120), (b) - color from blue to yellow (from -120 to +120). Coffee beans roasted in the Dietrich (CCR) roaster had a lighter colour, while those roasted in the Gothot (CC) roaster had a darker colour. In the case of ground coffee colour tests, coffee ground from beans roasted in the Dietrich (CCR) roaster also had a lighter colour, while coffee ground from beans roasted in the Gothot (CC) roaster had a darker colour.

Keywords: coffee beans, ground coffee, colour, CIELab, RGB

Procedia PDF Downloads 7
29455 Differential Signaling Spread-Spectrum Modulation of the In-Door LED Visible Light Wireless Communications using Mobile-Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Visible light communication combined with spread spectrum modulation is demonstrated in this study. Differential signaling method also ensures the proposed system that can support high immunity to ambient light interference. Experiment result shows the proposed system has 6 dB gain comparing with the original On-Off Keying modulation scheme.

Keywords: Visible Light Communication (VLC), Spread Spectrum Modulation (SSM), On-Off Keying, visible light communication

Procedia PDF Downloads 523
29454 The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures

Authors: Yang Liu

Abstract:

Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well.

Keywords: reinforced concrete shear wall, seismic performance, high mode effect, nonlinear analysis

Procedia PDF Downloads 157
29453 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science

Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier

Abstract:

Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared

Keywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis

Procedia PDF Downloads 118
29452 Pro-Ecological Antioxidants for Polymeric Composites

Authors: Masek A., Zaborski M.

Abstract:

In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.

Keywords: polymers, flavonoids, stabilization, ageing, oxidation

Procedia PDF Downloads 309
29451 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes

Procedia PDF Downloads 405
29450 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: cognitive radio, energy detector, periodogram, spectrum sensing

Procedia PDF Downloads 379
29449 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 211
29448 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images

Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion

Abstract:

Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.

Keywords: aerial LiDAR, colorization, deep learning, intensity images

Procedia PDF Downloads 168
29447 Robust and Transparent Spread Spectrum Audio Watermarking

Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi

Abstract:

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

Keywords: audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter

Procedia PDF Downloads 200
29446 The Chromatic Identity of the Ancestral Architecture of the Ksour of Bechar, Algeria

Authors: Racha Ghariri, Khaldia Belkheir, Assil Ghariri

Abstract:

In this paper, the researchers present a part of their research on the colors of the city of Bechar (Algeria). It is about a chromatic study of the ancient architecture of the Ksour. Being a subject of intervention, regarding their degradable state, the Ksour are the case of their study, especially that the subject of color does not occupy, virtually, the involved on these heritage sites. This research aims to put the basics for methods which allow to know what to preserve as a color and how to do so, especially during a restoration, and to understand the evolution of the chromatic state of the city.

Keywords: architecture/colours, chromatic identity, geography of colour, regional palette, chromatic architectural analysis

Procedia PDF Downloads 307
29445 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu

Abstract:

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Keywords: earth station in motion, ITU standards, radio regulations, radio spectrum, satellite communication

Procedia PDF Downloads 288
29444 Effectiveness of an Early Intensive Behavioral Intervention Program on Infants with Autism Spectrum Disorder

Authors: Dongjoo Chin

Abstract:

The purpose of this study was to investigate the effectiveness of an Early Intensive Behavioral Intervention (EIBI) program on infants with autism spectrum disorder (ASD) and to explore the factors predicting the effectiveness of the program, focusing on the infant's age, language ability, problem behaviors, and parental stress. 19 pairs of infants aged between 2 and 5 years who have had been diagnosed with ASD, and their parents participated in an EIBI program at a clinic providing evidence-based treatment based on applied behavior analysis. The measurement tools which were administered before and after the EIBI program and compared, included PEP-R, a curriculum evaluation, K-SIB-R, K-Vineland-II, K-CBCL, and PedsQL for the infants, and included PSI-SF and BDI-II for the parents. Statistical analysis was performed using a sample t-test and multiple regression analysis and the results were as follows. The EIBI program showed significant improvements in overall developmental age, curriculum assessment, and quality of life for infants. There was no difference in parenting stress or depression. Furthermore, measures for both children and parents at the start of the program predicted neither PEP-R nor the degree of improvement in curriculum evaluation measured six months later at the end of the program. Based on these results, the authors suggest future directions for developing an effective intensive early intervention (EIBI) program for infants with ASD in Korea, and discuss the implications and limitations of this study.

Keywords: applied behavior analysis, autism spectrum disorder, early intensive behavioral intervention, parental stress

Procedia PDF Downloads 173
29443 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 176
29442 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 101
29441 Dyeing Properties of Natural Dyes on Silk Treated with ß-Cyclodextrin

Authors: Samera Salimpour Abkenar

Abstract:

In this work, silk yarns were treated using ß-cyclodextrin (ß-CD) and cross-linked with citric acid (CA) via pad-dry-cure method. Elemental and FESEM analyses confirmed the presence of ß-CD on the treated silk samples even after five washing cycles. Then, the treated samples were dyed using natural dyes (carrot, orange and tomato). Results showed that the color strength (K/S) of the treated samples had been markedly enhanced compared with the control sample (after treatment with metal mordant). Finally, the color strength (K/S value) and color fastness (fading, staining and light fastness) of the treated samples with ß-CD were investigated and compared.

Keywords: ß-cyclodextrin, dyeing, natural dyes, silk yarn

Procedia PDF Downloads 123