Search results for: changes in lives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1412

Search results for: changes in lives

2 Reassembling a Fragmented Border Landscape at Crossroads: Indigenous Rights, Rural Sustainability, Regional Integration and Post-Colonial Justice in Hong Kong

Authors: Chiu-Yin Leung

Abstract:

This research investigates a complex assemblage among indigenous identities, socio-political organization and national apparatus in the border landscape of post-colonial Hong Kong. This former British colony had designated a transient mode of governance in its New Territories and particularly the northernmost borderland in 1951-2012. With a discriminated system of land provisions for the indigenous villagers, the place has been inherited with distinctive village-based culture, historic monuments and agrarian practices until its sovereignty return into the People’s Republic of China. In its latest development imperatives by the national strategic planning, the frontier area of Hong Kong has been identified as a strategy site for regional economic integration in South China, with cross-border projects of innovation and technology zones, mega-transport infrastructure and inter-jurisdictional arrangement. Contemporary literature theorizes borders as the material and discursive production of territoriality, which manifest in state apparatus and the daily lives of its citizens and condense in the contested articulations of power, security and citizenship. Drawing on the concept of assemblage, this paper attempts to tract how the border regime and infrastructure in Hong Kong as a city are deeply ingrained in the everyday lived spaces of the local communities but also the changing urban and regional strategies across different longitudinal moments. Through an intensive ethnographic fieldwork among the borderland villages since 2008 and the extensive analysis of colonial archives, new development plans and spatial planning frameworks, the author navigates the genealogy of the border landscape in Ta Kwu Ling frontier area and its implications as the milieu for new state space, covering heterogeneous fields particularly in indigenous rights, heritage preservation, rural sustainability and regional economy. Empirical evidence suggests an apparent bias towards indigenous power and colonial representation in classifying landscape values and conserving historical monuments. Squatter and farm tenants are often deprived of property rights, statutory participation and livelihood option in the planning process. The postcolonial bureaucracies have great difficulties in mobilizing resources to catch up with the swift, political-first approach of the mainland counterparts. Meanwhile, the cultural heritage, lineage network and memory landscape are not protected altogether with any holistic view or collaborative effort across the border. The enactment of land resumption and compensation scheme is furthermore disturbed by lineage-based customary law, technocratic bureaucracy, intra-community conflicts and multi-scalar political mobilization. As many traces of colonial misfortune and tyranny have been whitewashed without proper management, the author argues that postcolonial justice is yet reconciled in this fragmented border landscape. The assemblage of border in mainstream representation has tended to oversimplify local struggles as a collective mist and setup a wider production of schizophrenia experiences in the discussion of further economic integration among Hong Kong and other mainland cities in the Pearl River Delta Region. The research is expected to shed new light on the theorizing of border regions and postcolonialism beyond Eurocentric perspectives. In reassembling the borderland experiences with other arrays in state governance, village organization and indigenous identities, the author also suggests an alternative epistemology in reconciling socio-spatial differences and opening up imaginaries for positive interventions.

Keywords: heritage conservation, indigenous communities, post-colonial borderland, regional development, rural sustainability

Procedia PDF Downloads 191
1 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 99