Search results for: concrete design
12597 Reading the Interior Furnishings of the Houses through Turkish Films in the 1980's
Authors: Dicle Aydın, Tuba Bulbul Bahtiyar, Esra Yaldız
Abstract:
Housing offers a confirmed space for individuals. In the sense of interior decoration design, housing is a kind of typology in which user’s profile and individual preferences are considered as primary determinants. In Turkish society, the transition from traditional residences to apartment buildings brings the change in interior fittings depending upon the location of houses in its wake. The social status of the users in the residence and the differences of their everyday life can be represented more evident in these interior fittings. Hence, space becomes a tool to carry the information of users and the act. From this aspect, space as a concrete tool also enables a multidirectional communication with the cinema which reflects the social, cultural and economic changes of the society. While space takes a virtual or real part of the cinema, architecture discipline has also been influenced by cinematic phenomenas in its own practice. The subject of the movie and its content commune with the space, therefore, the design of the space is formed to support the subject. The purpose of this study is to analyze the space through motion pictures that convey the information of social life with an objective perspective. In addition, this study aims to determine the space, fittings and the use of fittings with respect to the social status of users. Morever, three films in 1980s in which Kemal Sunal, protagonist of the scripts that reflect society in many ways, performed are examined in this study. Movie sets are considered in many ways. For instance, in one of these movies, different houses from an apartment are analyzed vis a vis the perspective of the study.Keywords: housing, interior, furniture, furnishing, user
Procedia PDF Downloads 20412596 A Systematic Literature Review on Security and Privacy Design Patterns
Authors: Ebtehal Aljedaani, Maha Aljohani
Abstract:
Privacy and security patterns are both important for developing software that protects users' data and privacy. Privacy patterns are designed to address common privacy problems, such as unauthorized data collection and disclosure. Security patterns are designed to protect software from attack and ensure reliability and trustworthiness. Using privacy and security patterns, software engineers can implement security and privacy by design principles, which means that security and privacy are considered throughout the software development process. These patterns are available to translate "security & privacy-by-design" into practical advice for software engineering. Previous research on privacy and security patterns has typically focused on one category of patterns at a time. This paper aims to bridge this gap by merging the two categories and identifying their similarities and differences. To do this, the authors conducted a systematic literature review of 25 research papers on privacy and security patterns. The papers were analysed based on the category of the pattern, the classification of the pattern, and the security requirements that the pattern addresses. This paper presents the results of a comprehensive review of privacy and security design patterns. The review is intended to help future IT designers understand the relationship between the two types of patterns and how to use them to design secure and privacy-preserving software. The paper provides a clear classification of privacy and security design patterns, along with examples of each type. The authors found that there is only one widely accepted classification of privacy design patterns, while there are several competing classifications of security design patterns. Three types of security design patterns were found to be the most commonly used.Keywords: design patterns, security, privacy, classification of patterns, security patterns, privacy patterns
Procedia PDF Downloads 13412595 Design for Safety: Safety Consideration in Planning and Design of Airport Airsides
Authors: Maithem Al-Saadi, Min An
Abstract:
During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model.Keywords: airport airside planning and design, design for safety, fuzzy reasoning approach, fuzzy AHP, risk assessment
Procedia PDF Downloads 36812594 Applying the Integrative Design Process in Architectural Firms: An Analytical Study on Egyptian Firms
Authors: Carole A. El Raheb, Hassan K. Abdel-Salam, Ingi Elcherif
Abstract:
An architect carrying the design process alone is the main reason for the deterioration of the quality of the architectural product as the complexity of the projects makes it a multi-disciplinary work; then, the Integrative Design Process (IDP) must be applied in the architectural firm especially from the early design phases to improve the product’s quality and to eliminate the ignorance of the principles of design causing the occurrence of low-grade buildings. The research explores the Integrative Design (ID) principles that fit in the architectural practice. Constraints facing this application are presented with strategies and solutions to overcome them. A survey questionnaire was conducted to collect data from a number of recognized Egyptian Architecture, Engineering and Construction (AEC) firms that explores their opinions on using the IDP. This survey emphasizes the importance of the IDP in firms and presents the reasons preventing the firms from applying the IDP. The aim here is to investigate the potentials of integrating this approach into architectural firms emphasizing the importance of this application which ensures the realization of the project’s goal and eliminates the reduction in the project’s quality.Keywords: application, architectural firms, integrative design principles, integrative design process, the project quality
Procedia PDF Downloads 23312593 Universal Design Building Standard for India: A Critical Inquiry
Authors: Sushil Kumar Solanki, Rachna Khare
Abstract:
Universal Design is a concept of built environment creation, where all people are facilitated to the maximum extent possible without using any type of specialized design. However, accessible design is a design process in which the needs of people with disabilities are specifically considered. Building standards on accessibility contains scoping and technical requirements for accessibility to sites, facilities, building and elements by individual with disability. India is also following its prescriptive types of various building standards for the creation of physical environment for people with disabilities. These building standards are based on western models instead of research based standards to serve Indian needs. These standards lack contextual connect when reflects in its application in the urban and rural environment. This study focuses on critical and comparative study of various international building standards and codes, with existing Indian accessibility standards to understand problems and prospects of concept of Universal Design building standards for India. The result of this study is an analysis of existing state of Indian building standard pertaining to accessibility and future need of performance based Universal Design concept.Keywords: accessibility, building standard, built-environment, universal design
Procedia PDF Downloads 29612592 Design Aspects of 3D Printing for Fashion and Textiles
Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan
Abstract:
3D printing is now drawing attention to manufacturing process. In fashion and textile industry, many 3D printing applications had been developed for prototyping or even final product production because of its great flexibility in production. However, when compared with conventional manufacturing processes for fashion and textiles, the design aspects and requirements may not be same for using 3D printing process. Therefore, in this paper, we will compare the design aspects between conventional manufacturing processes and 3D printing processes. Also, the material requirements related to the design in 3D printing for fashion and textiles will be reviewed and discussed. This review paper may demonstrate a possible way to develop 3D printing method(s) for fashion and textiles.Keywords: 3D printing, design, textile, applications
Procedia PDF Downloads 5912591 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation
Authors: Rashmi Malik, Videep Mishra
Abstract:
The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.Keywords: iterative game design, generative design, gaming asset automation, generative game design
Procedia PDF Downloads 7212590 Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading
Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams
Abstract:
Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP.Keywords: damaged, concrete, impact, repaired
Procedia PDF Downloads 34712589 Production of 100 Kg/Day Zeolite a Using Locally Fabricated Crystallizer from Nigeria Ahoko Kaolin
Authors: M. S. Haruna, A. R. Agava, N. J. Sani, A. S. Kovo
Abstract:
The recent effort for cheaper raw material for the production of Zeolite A that is economically beneficial necessitated the reason for this work. The studies explore the use of locally fabricated crystallizer for the production of zeolite A using Nigeria Ahoko Kaolin as the main raw material. To achieve this intention, a systematic chemical engineering approach for the design of processes was adopted. Firstly a unique simplified flowsheet was developed, and then material and energy balance was conducted and finally followed by a detail design of the crystallizer. The summary of the result of the design showed that the optimum design parameters of 0.45 m and 1.125 were obtained for the diameter and height, respectively. The fabricated crystallizer was successfully tested for the production of Zeolite A, which is the expectation of this work.Keywords: Zeolite A, design, crystallizer, Ahoko, Kaolin
Procedia PDF Downloads 9112588 Optimization of High Flux Density Design for Permanent Magnet Motor
Authors: Dong-Woo Kang
Abstract:
This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations.Keywords: demagnetization, design optimization, magnetic analysis, permanent magnet motors
Procedia PDF Downloads 38012587 The Portland Cement Limestone: Silica Fume System as an Alternative Cementitious Material
Authors: C. S. Paglia, E. Ginercordero, A. Jornet
Abstract:
Environmental pollution, along with the depletion of natural resources, is among the most serious global challenges in our times. The construction industry is one of the sectors where a relevant reduction of the environmental impact can be achieved. Thus, the cement production will play a key role in sustainability, by reducing the CO₂ emissions and energy consumption and by increasing the durability of the structures. A large number of investigations have been carried out on blended cements, but it exists a lack of information on the Portland cement limestone - silica fume system. Mortar blends are optimized in the mix proportions for the different ingredients, in particular for the dosage of the silica fume. Portland cement and the new binder-based systems are compared with respect to the fresh mortar properties, the mechanical and the durability behaviour of the hardened specimens at 28 and 90 days. The use of this new binder combination exhibits an interesting hydration development with time and maintain the conventional characteristics of Portland cementitious material. On the other hand, it will be necessary to reproduce the Portland Limestone Cement-silica fume system within the concrete. A reduction of the CO₂ production, energy consumption, and a reasonable service life of the concrete structures, including a maintenance free period, will all contribute to a better environment.Keywords: binder, cement, limestone, silica fume
Procedia PDF Downloads 12012586 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.Keywords: bisection method, FASTMT, iterative root-finding technique, reinforced concrete membrane
Procedia PDF Downloads 27612585 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag
Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker
Abstract:
Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.Keywords: hemp, hempcrete, acoustic absorption, GGBS
Procedia PDF Downloads 40512584 Design and Stability Analysis of Fixed Wing – VTOL UAV
Authors: Omar Eldenali, Ahmed M. Bufares
Abstract:
There are primarily two types of Unmanned Aerial Vehicle (UAVs), namely, multirotor and fixed wing. Each type has its own advantages. This study introduces a design of a fixed wing vertical take-off and landing (VTOL) UAV. The design is classified as ready-to-fly (RTF) fixed wing UAV. This means that the UAV is capable of not only taking off, landing, or hovering like a multirotor aircraft but also cruising like a fixed wing UAV. In this study, the conceptual design of 15 kg takeoff weight twin-tail boom configuration FW-VTOL plane is carried out, the initial sizing of the plane is conducted, and both the horizontal and vertical tail configurations are estimated. Moreover, the power required for each stage of flight is determined. Finally, the stability analysis of the plane based on this design is performed, the results shows that this design based on the suggested flight mission is stable and can be utilized.Keywords: FW-VTOL, initial sizing, constrain analysis, stability
Procedia PDF Downloads 8912583 Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand
Authors: Mogeeb A. El-Sheikh
Abstract:
The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method.Keywords: adaptable socket, prosthetic hand, transradial amputee, data glove
Procedia PDF Downloads 26312582 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7
Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam
Abstract:
Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints
Procedia PDF Downloads 32512581 FengShui Paradigm as Philosophy of Sustainable Design
Authors: E. Erdogan, H. A. Erdogan
Abstract:
FengShui, an old Chinese discipline, dates back to more than 5000 years, is one of the design principles that aim at creating habitable and sustainable spaces in harmony with nature by systematizing data within its own structure. Having emerged from Chinese mysticism and embodying elements of faith in its principles, FengShui argues that the positive energy in the environment channels human behavior and psychology. This argument is supported with the thesis of quantum physics that ‘everything is made up of energy’ and gains an important place. In spaces where living and working take place with several principles and systematized rules, FengShui promises a happier, more peaceful and comfortable life by influencing human psychology, acts, and soul as well as the professional and social life of the individual. Observing these design properties in houses, workplaces, offices, the environment, and daily life as a design paradigm is significant. In this study, how FengShui, a Central Asian culture emanated from Chinese mysticism, shapes design and how it is used as an element of sustainable design will be explained.Keywords: Feng Shui, design principle, sustainability, philosophy
Procedia PDF Downloads 54212580 Analysis of Importance of Culture in Distributed Design Based on the Case Study at the University of Strathclyde
Authors: Zixuan Yang
Abstract:
This paper presents an analysis of the necessary consideration culture in distributed design through a thorough literature review and case study. The literature review has identified that the need for understanding cultural differences in product design and user evaluations is highlighted by analyzing cross-cultural influences; culture plays a significant role in distributed work, particularly in establishing team cohesion, trust, and credibility early in the project. By applying approaches of Geert Hofstede's dimensions and Fukuyama's trust analysis, a case study of a global design project, i.e., multicultural distributed teamwork solving the problem in terms of reducing the risk of deep vein thrombosis, showcases cultural dynamics, emphasizing trust-building and decision-making. The lessons learned emphasized the importance of cultural awareness, adaptability, and the utilization of scientific theories to enable effective cross-cultural collaborations in global design, providing valuable insights into navigating cultural diversity within design practices.Keywords: culture, distributed design, global design, Geert Hofstede's dimensions, Fukuyama's trust analysis
Procedia PDF Downloads 7112579 Integration of Design Management in the Product Development Process in SME's
Authors: Vitor Carneiro, Augusto Barata Da Rocha, Barbara Rangel, Jorge Lino Alves
Abstract:
In the European Union countries, Small and Medium-Sized Enterprises (SME’s) have an important contribution to economic activity and to the Gross Domestic Product (GDP). The implementation of design practices in SME’s is often a difficult task due to resources limitations. Unlike large companies, their product development and innovation processes frequentlylack adequate planning and systematic procedures. Design management interest has grown exponentially in recent years, but as it is a recent topic there is an absence of systematic methodologies to implement design management in SME’s with little or no design experience. This work presents a contribution to improve and optimize the process of design integration and management in SME’s. A review analysis is presented to select relevant articles on the subject, review and classify the main published contributions. Based on the selected articles content it was possible to identify five main themes related to the subject under analysis: Design Function Organization, Design Management Integration, Design Management Capabilities, Managing Design Projects, and Tools and Methods. Design management is discussed from different perspectives depending on the focus on which it is placed, whether in a design or management perspective, leading to different visions and definitions: from a more upstream strand at the intersection of design and the organization's strategic management (strategic design management) to a more downstream strand related to project management and design process (design management operational). The review analysis of the selected articles allowed the identification of a high level of complexity of connections and parameters in the design management during the product development process in the context of SME’s. Within each group of the five main themes, several sub-themes, directly or indirectly related, should be considered.Sub-connections also occur between sub-themes of different themes creating a complex and intricate web of connections. This complexity of connections is often the main obstacle to conduct design management and product development efficiently. This work proposes a formulation of a systematic methodological approach to optimize the integrated project and the management and control of the product development process among SME's. The implementation of this formulation will improve the integration of design management in the product development and innovation process in SME’s.Keywords: design management, product development, product innovation, SME’s.
Procedia PDF Downloads 22512578 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems
Authors: Baris Can Yalcin
Abstract:
Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.Keywords: design, mechatronics, motion sensor, data acquisition
Procedia PDF Downloads 58812577 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC
Authors: Yu-Zhou Zheng, Wen-Wei Wang
Abstract:
In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening
Procedia PDF Downloads 34812576 Experimental Study on Single Bay RC Frame Designed Using EC8 under In-Plane Cyclic Loading
Authors: N. H. Hamid, M. S. Syaref, M. I. Adiyanto, M. Mohamed
Abstract:
A one-half scale of single-bay two-storey RC frame together with foundation beam and mass concrete block is investigated. Moment resisting RC frame was designed using EC8 by including the provision for seismic loading and detailing of its connection. The objective of the experimental work is to determine seismic behaviour RC frame under in-plane lateral cyclic loading using displacement control method. A double actuator is placed at centre of the mass concrete block at top of frame to represent the seismic load. The percentage drifts are starting from ±0.01% until ±2.25% with increment of ±0.25% drift. The ultimate lateral load of 158.48 kN was recorded at +2.25% drift in pushing and -126.09 kN in pulling direction. From the experimental hysteresis loops, the parameters such as lateral strength capacity, stiffness, ductility and equivalent viscous damping can be obtained. RC frame behaves in the elastic manner followed by inelastic behaviour after reaches the yield limit. The ductility value for this type frame is 4 which lies between the limit 3 and 6. Therefore, it is recommended to build this RC frame for moderate seismic regions under Ductility Class Medium (DCM) such as in Sabah, East Malaysia.Keywords: single bay, moment resisting RC frame, ductility class medium, inelastic behavior, seismic load
Procedia PDF Downloads 39012575 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 9112574 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico
Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos
Abstract:
Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis
Procedia PDF Downloads 15312573 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products
Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin
Abstract:
Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.Keywords: utilization of copper slag, cast iron, grinding balls, propping agents
Procedia PDF Downloads 15812572 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design
Authors: Kenny Raharjo, Ramon Lawrence
Abstract:
Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics
Procedia PDF Downloads 51312571 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra
Authors: Amin Asgarian, Ghyslaine McClure
Abstract:
Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design
Procedia PDF Downloads 23912570 Strength Properties of Ca-Based Alkali Activated Fly Ash System
Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh
Abstract:
Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption
Procedia PDF Downloads 22712569 Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems
Authors: Paolo Castaldo, Bruno Palazzo, Laura Lodato
Abstract:
This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed.Keywords: FP devices, seismic reliability, seismic robustness, seizure
Procedia PDF Downloads 41812568 Transferring of Digital DIY Potentialities through a Co-Design Tool
Authors: Marita Canina, Carmen Bruno
Abstract:
Digital Do It Yourself (DIY) is a contemporary socio-technological phenomenon, enabled by technological tools. The nature and potential long-term effects of this phenomenon have been widely studied within the framework of the EU funded project ‘Digital Do It Yourself’, in which the authors have created and experimented a specific Digital Do It Yourself (DiDIY) co-design process. The phenomenon was first studied through a literature research to understand its multiple dimensions and complexity. Therefore, co-design workshops were used to investigate the phenomenon by involving people to achieve a complete understanding of the DiDIY practices and its enabling factors. These analyses allowed the definition of the DiDIY fundamental factors that were then translated into a design tool. The objective of the tool is to shape design concepts by transferring these factors into different environments to achieve innovation. The aim of this paper is to present the ‘DiDIY Factor Stimuli’ tool, describing the research path and the findings behind it.Keywords: co-design process, digital DIY, innovation, toolkit
Procedia PDF Downloads 180